Home
Class 11
PHYSICS
Three particles of masses 8 kg, 4 kg and...

Three particles of masses 8 kg, 4 kg and 4 kg situated at (4,1), (-2,2) and (1,-3) are acted upon by external forces `6bar(j)N,-6 bar(i)N` and `14 bar(i)N`. The acceleration of centre of mass of the system is

A

`0.625 ms^(-2)`

B

`6.25 ms^(-2)`

C

`2.2 ms^(-2)`

D

`22 ms^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the acceleration of the center of mass of the system of three particles, we will follow these steps: ### Step 1: Identify the masses and positions of the particles We have three particles with the following properties: - Particle 1: Mass \( m_1 = 8 \, \text{kg} \) at position \( (4, 1) \) - Particle 2: Mass \( m_2 = 4 \, \text{kg} \) at position \( (-2, 2) \) - Particle 3: Mass \( m_3 = 4 \, \text{kg} \) at position \( (1, -3) \) ### Step 2: Identify the forces acting on each particle The external forces acting on the particles are: - Force on Particle 1: \( \vec{F}_1 = 6 \hat{j} \, \text{N} \) - Force on Particle 2: \( \vec{F}_2 = -6 \hat{i} \, \text{N} \) - Force on Particle 3: \( \vec{F}_3 = 14 \hat{i} \, \text{N} \) ### Step 3: Calculate the acceleration of each particle Using Newton's second law, the acceleration \( \vec{a} \) of each particle can be calculated as: \[ \vec{a}_i = \frac{\vec{F}_i}{m_i} \] - For Particle 1: \[ \vec{a}_1 = \frac{6 \hat{j}}{8} = \frac{3}{4} \hat{j} \, \text{m/s}^2 \] - For Particle 2: \[ \vec{a}_2 = \frac{-6 \hat{i}}{4} = -\frac{3}{2} \hat{i} \, \text{m/s}^2 \] - For Particle 3: \[ \vec{a}_3 = \frac{14 \hat{i}}{4} = \frac{7}{2} \hat{i} \, \text{m/s}^2 \] ### Step 4: Calculate the total mass of the system The total mass \( M \) of the system is: \[ M = m_1 + m_2 + m_3 = 8 + 4 + 4 = 16 \, \text{kg} \] ### Step 5: Calculate the acceleration of the center of mass The acceleration of the center of mass \( \vec{a}_{cm} \) is given by: \[ \vec{a}_{cm} = \frac{m_1 \vec{a}_1 + m_2 \vec{a}_2 + m_3 \vec{a}_3}{M} \] Substituting the values: \[ \vec{a}_{cm} = \frac{8 \left(\frac{3}{4} \hat{j}\right) + 4 \left(-\frac{3}{2} \hat{i}\right) + 4 \left(\frac{7}{2} \hat{i}\right)}{16} \] Calculating each term: - For Particle 1: \[ 8 \cdot \frac{3}{4} \hat{j} = 6 \hat{j} \] - For Particle 2: \[ 4 \cdot -\frac{3}{2} \hat{i} = -6 \hat{i} \] - For Particle 3: \[ 4 \cdot \frac{7}{2} \hat{i} = 14 \hat{i} \] Now, summing these: \[ \vec{a}_{cm} = \frac{(-6 \hat{i} + 14 \hat{i} + 6 \hat{j})}{16} = \frac{(8 \hat{i} + 6 \hat{j})}{16} \] This simplifies to: \[ \vec{a}_{cm} = \frac{1}{2} \hat{i} + \frac{3}{8} \hat{j} \, \text{m/s}^2 \] ### Step 6: Calculate the magnitude of the acceleration of the center of mass The magnitude \( |\vec{a}_{cm}| \) is calculated as: \[ |\vec{a}_{cm}| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{3}{8}\right)^2} \] Calculating each term: \[ \left(\frac{1}{2}\right)^2 = \frac{1}{4}, \quad \left(\frac{3}{8}\right)^2 = \frac{9}{64} \] Finding a common denominator (64): \[ \frac{1}{4} = \frac{16}{64} \] Thus, \[ |\vec{a}_{cm}| = \sqrt{\frac{16}{64} + \frac{9}{64}} = \sqrt{\frac{25}{64}} = \frac{5}{8} \, \text{m/s}^2 \] ### Final Answer The acceleration of the center of mass of the system is: \[ \frac{5}{8} \, \text{m/s}^2 \quad \text{or} \quad 0.625 \, \text{m/s}^2 \]
Promotional Banner