Home
Class 11
PHYSICS
The cross product of the vectors (2i-3j+...

The cross product of the vectors `(2i-3j+4k)` and `(i+4j-5k)` is

A

`-hat(i)-14hat(j)+11 hat(k)`

B

`hat(i)+14 hat(j)+11 hat(k)`

C

`-hat(i)+14 hat(j)+11hat(k)`

D

`-hat(i)+14hat(j)+5hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The unit vector parallel to the resultant of the vectors A = 4i+3j + 6k and B = -i + 3j-8k is

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .

The scalar product of the vector hat i+\ hat j+\ hat k\ with the unit vector along the sum of vectors 2 hat i+\ 4 hat j-5 hat k . and lambda hat i+\ 2 hat j+\ 3 hat k\ is equal to one. Find the value of lambda .

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)= (hat(i)-2hat(j)+3hat(k)) .

Find the scalar and vector products of two vectors vec(A)=(3hat(i)-4hat(j)+5hat(k)) "and" vec(B)=(-2hat(i)+hat(j)-3hat(k)) .

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Find the scalar and vector paroducts of two vectors. a=(3hat(i)-4hat(j)+5hat(k)) " and " b=(-2hat (i) +hat(j)-3hat(k))

The positon vector of the centroid of the triangle ABC is 2i+4j+2k . If the position vector of the vector A is 2i+6j+4k., then the position vector of midpointof BC is (A) 2i+3j+k (B) 2i+3jk (C) 2i-3j-k (D) -2i-3j-k