Home
Class 11
PHYSICS
If vecA=4N, vecB=3N the value of |vecAxx...

If `vecA=4N`, `vecB=3N` the value of `|vecAxxvecB|^(2)+|vecA.vecB|^(2)` then

A

5 N

B

25 N

C

144 N

D

169 N

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(vecA+2vecB).(2vecA-3vecB) :-

The value of the expression |vecaxxvecb|^(2)+(veca.vecb)^(2) is….. .

If [veca vecb vecc]=1 then value of (veca.vecbxxvecc)/(veccxxveca.vecb)+(vecb.veccxxveca)/(vecaxxvecb.vecc)+(vecc.vecaxxvecb)/(vecbxxvecc.veca) is

If |vecAxxvecB|=sqrt(3) vecA.vecB , then the value of |vecA+vecB| is

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

[(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

If vecAxxvecB=0, can you say that a. vecA=vecB, b. vecA!=vecB?