Home
Class 11
PHYSICS
If vec(A)=2hat(i)+3hat(j)+6hat(k) and ve...

If `vec(A)=2hat(i)+3hat(j)+6hat(k)` and `vec(B)=3hat(i)-6hat(j)+2hat(k)` then vector perpendicular to both `vec(A)` and `vec(B)` has magnitude K times that of `6hat(i)+2hat(j)-3hat(k)`. Then K =

A

1

B

3

C

7

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector that is perpendicular to both vectors \(\vec{A}\) and \(\vec{B}\), and then determine the value of \(K\) such that the magnitude of this perpendicular vector is \(K\) times the magnitude of another given vector. ### Step 1: Define the vectors We are given: \[ \vec{A} = 2\hat{i} + 3\hat{j} + 6\hat{k} \] \[ \vec{B} = 3\hat{i} - 6\hat{j} + 2\hat{k} \] ### Step 2: Calculate the cross product \(\vec{A} \times \vec{B}\) The vector perpendicular to both \(\vec{A}\) and \(\vec{B}\) can be found using the cross product: \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 3 & -6 & 2 \end{vmatrix} \] Calculating the determinant: \[ \vec{A} \times \vec{B} = \hat{i} \begin{vmatrix} 3 & 6 \\ -6 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 6 \\ 3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 3 & -6 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ 3 \cdot 2 - (-6) \cdot 6 = 6 + 36 = 42 \] 2. For \(\hat{j}\): \[ 2 \cdot 2 - 3 \cdot 6 = 4 - 18 = -14 \quad \text{(note the negative sign)} \] 3. For \(\hat{k}\): \[ 2 \cdot (-6) - 3 \cdot 3 = -12 - 9 = -21 \] Putting it all together: \[ \vec{A} \times \vec{B} = 42\hat{i} + 14\hat{j} - 21\hat{k} \] ### Step 3: Calculate the magnitude of \(\vec{A} \times \vec{B}\) The magnitude of the cross product is given by: \[ |\vec{A} \times \vec{B}| = \sqrt{42^2 + 14^2 + (-21)^2} \] Calculating each term: - \(42^2 = 1764\) - \(14^2 = 196\) - \((-21)^2 = 441\) Adding these: \[ |\vec{A} \times \vec{B}| = \sqrt{1764 + 196 + 441} = \sqrt{2401} = 49 \] ### Step 4: Calculate the magnitude of the vector \(6\hat{i} + 2\hat{j} - 3\hat{k}\) Now we calculate the magnitude of the vector: \[ \vec{C} = 6\hat{i} + 2\hat{j} - 3\hat{k} \] The magnitude is: \[ |\vec{C}| = \sqrt{6^2 + 2^2 + (-3)^2} \] Calculating each term: - \(6^2 = 36\) - \(2^2 = 4\) - \((-3)^2 = 9\) Adding these: \[ |\vec{C}| = \sqrt{36 + 4 + 9} = \sqrt{49} = 7 \] ### Step 5: Find \(K\) We know that the magnitude of \(\vec{A} \times \vec{B}\) is \(K\) times the magnitude of \(\vec{C}\): \[ |\vec{A} \times \vec{B}| = K \cdot |\vec{C}| \] Substituting the values we found: \[ 49 = K \cdot 7 \] Solving for \(K\): \[ K = \frac{49}{7} = 7 \] ### Final Answer Thus, the value of \(K\) is: \[ \boxed{7} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

If vec(A)=4hat(i)+nhat(j)-2hat(k) and vec(B)=2hat(i)+3hat(j)+hat(k) , then find the value of n so that vec(A) bot vec(B)