Home
Class 11
PHYSICS
Vertices of a triangle are given by hat(...

Vertices of a triangle are given by `hat(i)+3hat(j)+2hat(k), 2hat(i)-hat(j)+hat(k)` and `-hat(i)+2hat(j)+3hat(k)`, then area of triangle is (in units)

A

`(sqrt(107))/(2)`

B

`sqrt((107)/(6))`

C

`sqrt((107)/(2))`

D

`(sqrt(207))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the vertices given in vector form, we will follow these steps: ### Step 1: Identify the vertices The vertices of the triangle are given as: - Vertex A: \( \mathbf{A} = \hat{i} + 3\hat{j} + 2\hat{k} \) - Vertex B: \( \mathbf{B} = 2\hat{i} - \hat{j} + \hat{k} \) - Vertex C: \( \mathbf{C} = -\hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Find the vectors representing two sides of the triangle We can find two vectors that represent the sides of the triangle using the vertices: - Vector \( \mathbf{AB} = \mathbf{B} - \mathbf{A} \) - Vector \( \mathbf{AC} = \mathbf{C} - \mathbf{A} \) Calculating these: 1. \( \mathbf{AB} = (2\hat{i} - \hat{j} + \hat{k}) - (\hat{i} + 3\hat{j} + 2\hat{k}) \) \[ = (2 - 1)\hat{i} + (-1 - 3)\hat{j} + (1 - 2)\hat{k} = \hat{i} - 4\hat{j} - \hat{k} \] 2. \( \mathbf{AC} = (-\hat{i} + 2\hat{j} + 3\hat{k}) - (\hat{i} + 3\hat{j} + 2\hat{k}) \) \[ = (-1 - 1)\hat{i} + (2 - 3)\hat{j} + (3 - 2)\hat{k} = -2\hat{i} - \hat{j} + \hat{k} \] ### Step 3: Calculate the cross product of the two vectors The area of the triangle can be found using the formula: \[ \text{Area} = \frac{1}{2} |\mathbf{AB} \times \mathbf{AC}| \] To find \( \mathbf{AB} \times \mathbf{AC} \), we set up the determinant: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -4 & -1 \\ -2 & -1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} -4 & -1 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -1 \\ -2 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -4 \\ -2 & -1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} -4 & -1 \\ -1 & 1 \end{vmatrix} = (-4)(1) - (-1)(-1) = -4 - 1 = -5 \) 2. \( \begin{vmatrix} 1 & -1 \\ -2 & 1 \end{vmatrix} = (1)(1) - (-1)(-2) = 1 - 2 = -1 \) 3. \( \begin{vmatrix} 1 & -4 \\ -2 & -1 \end{vmatrix} = (1)(-1) - (-4)(-2) = -1 - 8 = -9 \) Now substituting these back: \[ \mathbf{AB} \times \mathbf{AC} = -5\hat{i} + 1\hat{j} - 9\hat{k} \] ### Step 4: Find the magnitude of the cross product The magnitude of the cross product is: \[ |\mathbf{AB} \times \mathbf{AC}| = \sqrt{(-5)^2 + 1^2 + (-9)^2} = \sqrt{25 + 1 + 81} = \sqrt{107} \] ### Step 5: Calculate the area of the triangle Finally, the area of the triangle is: \[ \text{Area} = \frac{1}{2} |\mathbf{AB} \times \mathbf{AC}| = \frac{1}{2} \sqrt{107} \] Thus, the area of the triangle is \( \frac{\sqrt{107}}{2} \) square units. ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are