Home
Class 11
PHYSICS
The equations of displacement of two wav...

The equations of displacement of two waves are
`y_(1)=10"sin"(3pit+pi//3)`
and `y_(2)=5["sin"3pit+sqrt(3)"cos"3pit]`
What is the ratio of their amplitude ?

A

`1:2`

B

`2:1`

C

`1:3`

D

`1:1`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of displacement of two waves are given as y_(1) = 10 sin( 3 pi t + (pi)/(3)) , y_(2) = 5 [ sin 3 pi t + sqrt(3) cos 3 pi t] Then what is the ratio of their amplitudes

The equation of displacement of two waves are given as y_(1) = 10 sin( 3 pi t + (pi)/(3)) , y_(2) = 5 [ sin 3 pi t + sqrt(3) cos 3 pi t] Then what is the ratio of their amplitudes

The equation of displacement of two waves are given as y_(1) = 10 sin( 3 pi t + (pi)/(3)) , y_(2) = 5 [ sin 3 pi t + sqrt(3) cos 3 pi t] Then what is the ratio of their amplitudes

Two particle are executing SHMs .The equations of their motions are y_(1)=10"sin"(omegat+(pi)/(4)) " and "y_(2)=5 "sin"(omegat+(sqrt(3)pi)/(4)) What is the ratio of their amplitudes.

If two S.H.M.'s are represented by equation y_(1) = 10 "sin" [3pit+(pi)/(4)] and y_(2) = 5[sin(3pit)+sqrt(3)cos(3pit)] then find the ratio of their amplitudes and phase difference in between them.

An SHM is give by y=5["sin"(3pit)+sqrt(3)"cos"(3pit)] . What is the amplitude of the motion of y in metre ?

If two SHMs are represented by equations y_(1) = 5 sin (2pi t + pi//6) and y_(2) = 5 [sin (3pi) + sqrt3 cos (3pi t)] . Find the ratio of their amplitudes.

If two SHMs are repersented by y_(1) = 10 sin (4 pi + pi//2) and y_(2) = 5 (sin 2 pi t +sqrt 8 cos 2 pi t) , compare their amplitudes .

Two simple harmonic motions are represented by the equations. y_(1)=10"sin"(pi)/(4)(12t+1),y_(2)=5(sin3pt+sqrt(3)cos3pt) the ratio of their amplitudes is

Two simple harmonic motions are represented by the equations y_(1) = 10 sin(3pit + pi//4) and y_(2) = 5(sin 3pit + sqrt(3)cos 3pit) their amplitude are in the ratio of ………… .