Home
Class 11
PHYSICS
If vec(b)=3hat(i)+4hat(j) and vec(a)=hat...

If `vec(b)=3hat(i)+4hat(j)` and `vec(a)=hat(i)-hat(j)` the vector having the same magnitude as that of `vec(b)` and parallel to `vec(a)` is

A

`(5)/(sqrt2) (hat(i) - hat(j))`

B

`(5)/(sqrt2) (hat(i) + hat(j))`

C

`5 (hat(i) - hat(j))`

D

`5 (hat(i) + hat(j))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A) = 3hat(i) + 4hat(j) and vec(B) = 7hat(i) + 24hat(j) , the vector having the same magnitude as vec(B) and parallel to vec(A) is :

If vec(A)=4hat(i)-3hat(j) and vec(B)=6hat(i)+8hat(j) ,then find the magnitude and direction of vec(A)+vec(B) .

Which of the following is not true ? If vec(A) = 3hat(i) + 4hat(j) and vec(B) = 6hat(i) + 8hat(j) where A and B are the magnitude of vec(A) and vec(B) ?

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vec(A)=2hat(i)+hat(j) and vec(B)=hat(i)-hat(j) , sketch vector graphically and find the component of vec(A) along vec(B) and perpendicular to vec(B)

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :