Home
Class 11
PHYSICS
If vec(A) = (2hat(i) + 3hat(j)) and vec(...

If `vec(A) = (2hat(i) + 3hat(j)) and vec(B)= (hat(i)- hat(j))` then component of `vec(A)` perpendicular to vector `vec(B)` and in the same plane is

A

`(5)/(2) (hat(i) + hat(j))`

B

`(5)/(sqrt2) (hat(i) + hat(j))`

C

`(sqrt5)/(2) (hat(i) + hat(j))`

D

`(5)/(sqrt2) (hat(i) + hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the component of vector \(\vec{A}\) that is perpendicular to vector \(\vec{B}\) and in the same plane, we can follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{A} = 2\hat{i} + 3\hat{j} \] \[ \vec{B} = \hat{i} - \hat{j} \] ### Step 2: Find the unit vector of \(\vec{B}\) To find the unit vector \(\hat{B}\) in the direction of \(\vec{B}\), we first calculate the magnitude of \(\vec{B}\): \[ |\vec{B}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] Now, the unit vector \(\hat{B}\) is: \[ \hat{B} = \frac{\vec{B}}{|\vec{B}|} = \frac{\hat{i} - \hat{j}}{\sqrt{2}} \] ### Step 3: Calculate the projection of \(\vec{A}\) onto \(\vec{B}\) The projection of \(\vec{A}\) onto \(\vec{B}\) (denoted as \(\vec{R_1}\)) is given by: \[ \vec{R_1} = \left(\frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2}\right) \vec{B} \] First, we need to calculate \(\vec{A} \cdot \vec{B}\): \[ \vec{A} \cdot \vec{B} = (2\hat{i} + 3\hat{j}) \cdot (\hat{i} - \hat{j}) = 2 \cdot 1 + 3 \cdot (-1) = 2 - 3 = -1 \] Now, substituting this into the projection formula: \[ \vec{R_1} = \left(\frac{-1}{2}\right)(\hat{i} - \hat{j}) = -\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j} \] ### Step 4: Find the component of \(\vec{A}\) perpendicular to \(\vec{B}\) The component of \(\vec{A}\) that is perpendicular to \(\vec{B}\) (denoted as \(\vec{R}\)) can be found using: \[ \vec{R} = \vec{A} - \vec{R_1} \] Substituting the values we have: \[ \vec{R} = (2\hat{i} + 3\hat{j}) - \left(-\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}\right) \] Calculating this gives: \[ \vec{R} = 2\hat{i} + 3\hat{j} + \frac{1}{2}\hat{i} - \frac{1}{2}\hat{j} \] Combining the terms: \[ \vec{R} = \left(2 + \frac{1}{2}\right)\hat{i} + \left(3 - \frac{1}{2}\right)\hat{j} = \frac{5}{2}\hat{i} + \frac{5}{2}\hat{j} \] ### Final Answer The component of \(\vec{A}\) perpendicular to \(\vec{B}\) is: \[ \vec{R} = \frac{5}{2}\hat{i} + \frac{5}{2}\hat{j} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given vec(A) = 2hat(i) + 3hat(j) and vec(B) = hat(i) + hat(j) . What is the vector component of vec(A) in the direction of vec(B) ?

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

vec(A)=(3hat(i)+2hat(j)-6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) find the scalar product of vec(A) and vec(B) .

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

vec(A)=(hat(i)-2hat(j)+6hat(k)) and vec(B)=(hat(i)-2hat(j)+hat(k)) , find the cross product between vec(A) and vec(B) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+2hat(j)+2hat(k) , find the magnitude of compinent of (vec(A)+vec(B)) along vec(B)