Home
Class 11
PHYSICS
A force vec(F) = 5i - 3j + 2k moves a pa...

A force `vec(F) = 5i - 3j + 2k` moves a particle from `vec(r )_(1) = 2i + 7j + 4k " to " vec_(r )_(2) = 5i + 2j + 8k`. Calculate the workdone

A

38 units

B

20 units

C

30 units

D

15 units

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the work done by the force vector \(\vec{F} = 5\hat{i} - 3\hat{j} + 2\hat{k}\) when moving a particle from position vector \(\vec{r}_1 = 2\hat{i} + 7\hat{j} + 4\hat{k}\) to position vector \(\vec{r}_2 = 5\hat{i} + 2\hat{j} + 8\hat{k}\), we can follow these steps: ### Step 1: Calculate the Displacement Vector The displacement vector \(\vec{d}\) can be calculated using the formula: \[ \vec{d} = \vec{r}_2 - \vec{r}_1 \] Substituting the values: \[ \vec{d} = (5\hat{i} + 2\hat{j} + 8\hat{k}) - (2\hat{i} + 7\hat{j} + 4\hat{k}) \] ### Step 2: Simplify the Displacement Vector Now, we simplify the expression: \[ \vec{d} = (5 - 2)\hat{i} + (2 - 7)\hat{j} + (8 - 4)\hat{k} \] \[ \vec{d} = 3\hat{i} - 5\hat{j} + 4\hat{k} \] ### Step 3: Calculate the Work Done The work done \(W\) by the force vector is given by the dot product of the force vector \(\vec{F}\) and the displacement vector \(\vec{d}\): \[ W = \vec{F} \cdot \vec{d} \] Substituting the values: \[ W = (5\hat{i} - 3\hat{j} + 2\hat{k}) \cdot (3\hat{i} - 5\hat{j} + 4\hat{k}) \] ### Step 4: Perform the Dot Product Calculating the dot product: \[ W = (5 \cdot 3) + (-3 \cdot -5) + (2 \cdot 4) \] \[ W = 15 + 15 + 8 \] \[ W = 38 \] ### Final Answer The work done by the force in moving the particle from \(\vec{r}_1\) to \(\vec{r}_2\) is: \[ \boxed{38 \text{ units}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The work done by the force vec( F ) = 6 hat(i) + 2 hat(j) N in displacing an object from vec( r_(1)) = 3 hat(i) + 8 hat( j) to vec( r_(2)) = 5 hat( i) - 4 hat(j) m , is

A force vec F = (5 vec i+ 3 vec j+ 2 vec k) N is applied over a particle which displaces it from its origin to the point vec r=(2 vec i- vec j) m . The work done on the particle in joules is.

A force vec(F)=2hat(i)-3hat(j)+7hat(k) (N) acts on a particle which undergoes a displacement vec(r )=7hat(j)+3hat(j)-2hat(k)(m) . Calculate the work done by the force.

A force vec(F)=(2hat(i)+3hat(j)-5hat(k))N acts at a point vec(r )_(1)=(2hat(i)+4hat(j)+7hat(k))m . The torque of the force about the point vec(r )_(2)=(hat(i)+2hat(j)+3hat(k))m is

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

If vec(F ) = hat(i) +2 hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) what is vec(F) . vec(v) ?

If vec a= i- j and vec b=- j+2k ,find (vec a-2 vec b)dot( vec a+ vec b)

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find [ vec a vec b vec c], when (i) vec a=2 hat i-3 hat j , vec b= hat i+ hat j- hat k and vec c=3 hat i- hat k (ii) vec a= hat i-2 hat j+3 hat k , vec b=2 hat i+ hat j- hat k and vec c= hat j+ hat k

Find ( vec a+3 vec b).(2 vec a- vec b) , If vec a= hat i+ hat j+2 hat k and vec b=3 hat i+2 hat j- hat k