Home
Class 11
PHYSICS
A force of (hat(i) + 2hat(j) + 3hat(k))N...

A force of `(hat(i) + 2hat(j) + 3hat(k))N` is acting on a body having position vector `(3 hat(i) + hat(j) + 2hat(k))` in the same frame of reference
The moment of the force about the origin is

A

`- hat(i) - 7hat(j) + 5hat(k)`

B

`-7 hat(i) - 11 hat(j) + 5 hat(k)`

C

`-hat(i) + 11 hat(j) - 7 hat(k)`

D

`7 hat(i) + 10 hat(j) + 7 hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment of the force about the origin, we can use the formula for torque, which is given by the cross product of the position vector \( \mathbf{r} \) and the force vector \( \mathbf{F} \): \[ \mathbf{\tau} = \mathbf{r} \times \mathbf{F} \] ### Step 1: Identify the vectors Given: - Position vector \( \mathbf{r} = 3\hat{i} + \hat{j} + 2\hat{k} \) - Force vector \( \mathbf{F} = \hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Set up the cross product To calculate the cross product \( \mathbf{r} \times \mathbf{F} \), we can use the determinant method. We will set up a 3x3 determinant: \[ \mathbf{\tau} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ 1 & 2 & 3 \end{vmatrix} \] ### Step 3: Calculate the determinant We can expand this determinant as follows: \[ \mathbf{\tau} = \hat{i} \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \( \hat{i} \): \[ \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (1)(3) - (2)(2) = 3 - 4 = -1 \] 2. For \( \hat{j} \): \[ \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} = (3)(3) - (2)(1) = 9 - 2 = 7 \] 3. For \( \hat{k} \): \[ \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = (3)(2) - (1)(1) = 6 - 1 = 5 \] ### Step 4: Combine the results Now substituting back into the equation for \( \mathbf{\tau} \): \[ \mathbf{\tau} = -1\hat{i} - 7\hat{j} + 5\hat{k} \] Thus, we can write: \[ \mathbf{\tau} = -\hat{i} - 7\hat{j} + 5\hat{k} \] ### Final Answer The moment of the force about the origin is: \[ \mathbf{\tau} = -\hat{i} - 7\hat{j} + 5\hat{k} \, \text{N m} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

A force (hat(i)-2hat(j)+3hat(k)) acts on a particle of position vector (3hat(i)+2hat(j)+hat(k)) . Calculate the torque acting on the particle.

The torque of a force F = 2 hat(i) - 3 hat(j) +5 hat(k) acting at a point whose position vector r = 3 hat(i) - 3 hat(j) +5 hat(k) about the origin is

The torque of force F = -3 hat(i)+hat(j) + 5 hat(k) acting on a point r = 7 hat(i) + 3 hat(j) + hat(k) about origin will be

Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k) act at a point P, with position vector 4hat(i)-3hat(j)-hat(k) . Find the moment of the resultant of these force about the point Q whose position vector is 6hat(i)+hat(j)-3hat(k) .

The torque of a force F = -2 hat(i) +2 hat(j) +3 hat(k) acting on a point r = hat(i) - 2 hat(j)+hat(k) about origin will be

A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector is 2hat(i)-hat(j) . Find the moment of force F about the origin.

The force 7 hat i+ 3 hat j - 5 hat k acts on a particle whose position vector is hat i- hat j + hat k . What is the torque of a given force about the origin ?

Find the image of the point having position vector hat(i) + 3hat(j) + 4hat(k) in the plane vec(r ).(2hat(i) - hat(j) + hat(k))+ 3=0

Find the image of the point having position vector hat i+2 hat j+4 hat k in the plane vec r.(2 hat i- hat j+ hat k)+3=0.