Home
Class 11
PHYSICS
Vertices of a triangle are given by hat(...

Vertices of a triangle are given by `hat(i) + 3hat(j) + 2hat(k), 2hat(i) - hat(j) + hat(k) and -hat(i) + 2hat(j) + 3hat(k)`, then the area of triangle is `sqrt((107)/(2n))` (in units). Find the value of n=

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle formed by the given vertices, we will follow these steps: ### Step 1: Identify the vertices The vertices of the triangle are given as: - \( A = \hat{i} + 3\hat{j} + 2\hat{k} \) - \( B = 2\hat{i} - \hat{j} + \hat{k} \) - \( C = -\hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 2: Find the position vectors Let: - \( \vec{OA} = \hat{i} + 3\hat{j} + 2\hat{k} \) - \( \vec{OB} = 2\hat{i} - \hat{j} + \hat{k} \) - \( \vec{OC} = -\hat{i} + 2\hat{j} + 3\hat{k} \) ### Step 3: Calculate the vectors for two sides of the triangle We will calculate the vectors \( \vec{BA} \) and \( \vec{BC} \): - \( \vec{BA} = \vec{OA} - \vec{OB} = (\hat{i} + 3\hat{j} + 2\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) \) \[ = \hat{i} - 2\hat{i} + 3\hat{j} + \hat{j} + 2\hat{k} - \hat{k} = -\hat{i} + 4\hat{j} + \hat{k} \] - \( \vec{BC} = \vec{OC} - \vec{OB} = (-\hat{i} + 2\hat{j} + 3\hat{k}) - (2\hat{i} - \hat{j} + \hat{k}) \) \[ = -\hat{i} - 2\hat{i} + 2\hat{j} + \hat{j} + 3\hat{k} - \hat{k} = -3\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 4: Calculate the cross product \( \vec{BA} \times \vec{BC} \) We will use the determinant method to find the cross product: \[ \vec{BA} \times \vec{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -1 & 4 & 1 \\ -3 & 3 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} - \hat{j} \begin{vmatrix} -1 & 1 \\ -3 & 2 \end{vmatrix} + \hat{k} \begin{vmatrix} -1 & 4 \\ -3 & 3 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 4 & 1 \\ 3 & 2 \end{vmatrix} = (4)(2) - (1)(3) = 8 - 3 = 5 \) 2. \( \begin{vmatrix} -1 & 1 \\ -3 & 2 \end{vmatrix} = (-1)(2) - (1)(-3) = -2 + 3 = 1 \) 3. \( \begin{vmatrix} -1 & 4 \\ -3 & 3 \end{vmatrix} = (-1)(3) - (4)(-3) = -3 + 12 = 9 \) Putting it all together: \[ \vec{BA} \times \vec{BC} = 5\hat{i} - 1\hat{j} + 9\hat{k} \] ### Step 5: Calculate the magnitude of the cross product \[ |\vec{BA} \times \vec{BC}| = \sqrt{5^2 + (-1)^2 + 9^2} = \sqrt{25 + 1 + 81} = \sqrt{107} \] ### Step 6: Calculate the area of the triangle The area \( A \) of the triangle is given by: \[ A = \frac{1}{2} |\vec{BA} \times \vec{BC}| = \frac{1}{2} \sqrt{107} \] ### Step 7: Compare with the given area The problem states that the area can also be expressed as: \[ A = \sqrt{\frac{107}{2n}} \] Setting the two expressions for area equal: \[ \frac{1}{2} \sqrt{107} = \sqrt{\frac{107}{2n}} \] ### Step 8: Solve for \( n \) Squaring both sides: \[ \left(\frac{1}{2}\right)^2 \cdot 107 = \frac{107}{2n} \] \[ \frac{107}{4} = \frac{107}{2n} \] Cross-multiplying gives: \[ 107 \cdot 2n = 4 \cdot 107 \] Dividing both sides by \( 107 \): \[ 2n = 4 \implies n = 2 \] ### Final Answer The value of \( n \) is \( 2 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Vertices of a triangle are given by hat(i)+3hat(j)+2hat(k), 2hat(i)-hat(j)+hat(k) and -hat(i)+2hat(j)+3hat(k) , then area of triangle is (in units)

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If points A,B and C with position vectors 2 hat(i) - hat(j) + hat(k) , hat(i) - 3 hat(j) - 5hat(k) and alpha hat(i) - 3 hat(j) + hat(k) respectively are the vertices of a right-anged triangle with /_C = ( pi )/( 2) , then the values of alpha are

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)