Home
Class 11
PHYSICS
Two vectors are given by a = -2i + j-3k ...

Two vectors are given by a = -2i + j-3k and b = 5i + 3j-2k- If 3a+2b-c = 0 then third vector `vecc` is

A

`4 hat(i) + 9 hat(j) - 13 hat(k)`

B

`-4 hat(i) - 9hat(j) + 13hat(k)`

C

`4 hat(i) - 9hat(j) - 13 hat(k)`

D

`2 hat(i) - 3hat(j) + 13 hat(k)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

For given vectors, -> a=2 hat i- hat j+2 hat k and -> b=- hat i+ hat j- hat k find the unit vector in the direction of the vector -> a+ -> b .

If vectors vecA and vecB are 3i -4j + 5k and 2i + 3j - 4k respectively then find the unit vector parallel to vecA + vecB

The positon vector of the centroid of the triangle ABC is 2i+4j+2k . If the position vector of the vector A is 2i+6j+4k., then the position vector of midpointof BC is (A) 2i+3j+k (B) 2i+3jk (C) 2i-3j-k (D) -2i-3j-k

Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k

Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec c= hat i- hat j- hat k be three vectors. A vector vec v in the plane of vec a a n d vec b , whose projection on vec c is 1/(sqrt(3)) is given by a. hat i-3 hat j+3 hat k b. -3 hat i-3 hat j+3 hat k c. 3 hat i- hat j+3 hat k d. hat i+3 hat j-3 hat k

Show that the vectors a, b, c given by vec a= hat i+2 hat j+3 hat k , vec b=2 hat i+ hat j+3 hat ka n d vec c= hat i+ hat j+ hat k are non-coplanar. Express vector vec d=2 hat i-3 hat k as a liner combination of the vectors vec a , vec b ,a n d vec c .

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k and 3 hat i-6 hat j+2 hat k . Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k and vec b=6 hat i+5 hat j-2 hat k .

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

Show that each of the following triads of vectors are coplanar: vec a= hat i-2 hat j+3 hat k ,\ vec b=-2 hat i+3 hat j-4 hat k ,\ vec c= hat i-3 hat j+5 hat kdot