Home
Class 11
PHYSICS
The angle between the vectors (i + j + k...

The angle between the vectors `(i + j + k) and (i- j - k)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} \) and \( \mathbf{b} = \mathbf{i} - \mathbf{j} - \mathbf{k} \), we can use the formula for the cosine of the angle \( \theta \) between two vectors: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \] ### Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \) The dot product of two vectors \( \mathbf{a} \) and \( \mathbf{b} \) is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (1)(1) + (1)(-1) + (1)(-1) \] Calculating this gives: \[ \mathbf{a} \cdot \mathbf{b} = 1 - 1 - 1 = -1 \] ### Step 2: Calculate the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \) The magnitude of vector \( \mathbf{a} \): \[ |\mathbf{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] The magnitude of vector \( \mathbf{b} \): \[ |\mathbf{b}| = \sqrt{1^2 + (-1)^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 3: Substitute into the cosine formula Now we can substitute the values into the cosine formula: \[ \cos \theta = \frac{-1}{\sqrt{3} \cdot \sqrt{3}} = \frac{-1}{3} \] ### Step 4: Calculate \( \theta \) To find \( \theta \), we take the inverse cosine: \[ \theta = \cos^{-1}\left(-\frac{1}{3}\right) \] This gives us the angle between the two vectors. ### Final Answer Thus, the angle between the vectors \( \mathbf{a} \) and \( \mathbf{b} \) is: \[ \theta = \cos^{-1}\left(-\frac{1}{3}\right) \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If the angle between the vectors hat(i) + hat(k) and hat(i) + hat(j) + lambda hat(k) is ( pi )/( 3) , then the values of lambda are

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find the angle between the vectors 5hat i+3 hat j+4 hat k and 6 hat i-8 hat j- hat k .

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .

Find the angle between the vectors vec a= hat i- hat j+ hat k\ a n d\ vec b= hat i+ hat j- hat kdot

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .