Home
Class 11
PHYSICS
The cross product of the vectors (i - 2j...

The cross product of the vectors `(i - 2j + 3k) and (i + 4j -2k)` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the cross product of the vectors \( \mathbf{A} = \mathbf{i} - 2\mathbf{j} + 3\mathbf{k} \) and \( \mathbf{B} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} \), we will use the determinant method. ### Step-by-Step Solution: 1. **Set Up the Determinant**: We will create a 3x3 determinant where the first row consists of the unit vectors \( \mathbf{i}, \mathbf{j}, \mathbf{k} \), the second row consists of the components of vector \( \mathbf{A} \), and the third row consists of the components of vector \( \mathbf{B} \). \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -2 & 3 \\ 1 & 4 & -2 \end{vmatrix} \] 2. **Calculate the Determinant**: We can expand this determinant using the rule of Sarrus or cofactor expansion. \[ \mathbf{A} \times \mathbf{B} = \mathbf{i} \begin{vmatrix} -2 & 3 \\ 4 & -2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 3 \\ 1 & -2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} \] 3. **Calculate Each 2x2 Determinant**: - For \( \mathbf{i} \): \[ \begin{vmatrix} -2 & 3 \\ 4 & -2 \end{vmatrix} = (-2)(-2) - (3)(4) = 4 - 12 = -8 \] - For \( \mathbf{j} \): \[ \begin{vmatrix} 1 & 3 \\ 1 & -2 \end{vmatrix} = (1)(-2) - (3)(1) = -2 - 3 = -5 \] - For \( \mathbf{k} \): \[ \begin{vmatrix} 1 & -2 \\ 1 & 4 \end{vmatrix} = (1)(4) - (-2)(1) = 4 + 2 = 6 \] 4. **Combine the Results**: Now substituting these values back into the expression for the cross product: \[ \mathbf{A} \times \mathbf{B} = -8\mathbf{i} + 5\mathbf{j} + 6\mathbf{k} \] 5. **Final Result**: Thus, the cross product of the vectors \( \mathbf{A} \) and \( \mathbf{B} \) is: \[ \mathbf{A} \times \mathbf{B} = -8\mathbf{i} + 5\mathbf{j} + 6\mathbf{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The cross product of the vectors (2i - 3j + 4k) and (I + 4j -5k) is

The unit vector parallel to the resultant of the vectors A = 4i+3j + 6k and B = -i + 3j-8k is

The scalar product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vector 2 hat i+4 hat j-5 hat k and lambda hat i+2 hat j+3 hat k is equal to one. Find the value of lambda .

The scalar product of the vector hat i+\ hat j+\ hat k\ with the unit vector along the sum of vectors 2 hat i+\ 4 hat j-5 hat k . and lambda hat i+\ 2 hat j+\ 3 hat k\ is equal to one. Find the value of lambda .

The magnitude of the vector product of the vector hat i+ hat j+ hat k with a unit vector along the sum of vectors 2 hat i+4 hat j-\ 5 hat k and lambda hat i+2 hat j+3 hat k is equal to sqrt(2) . Find the value of lambda .

Find a unit vector in the direction of the resultant of the vectors hat i- hat j+3 hat k ,""2 hat i+ hat j-2 hat k"and"3 hat i +2 hat j-2 hat k""dot

Dot product of a vector with hat i+ hat j-3 hat k , hat i+3 hat j-2 hat k and 2 hat i+ hat j+4 hat k are 0,5 and 8 respectively. Find the vector.

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Dot product of a vector with hat i+ hat j-3 hat k ,\ hat i+3 hat j-2 hat k\ a n d\ 2 hat i+ hat j+4 hat k are 0, 5 and 8 respectively. Find the vector.