Home
Class 11
PHYSICS
Find the angle between the vectors (-2i ...

Find the angle between the vectors `(-2i + 2j) and 3i`

A

`60^(@)`

B

`120^(@)`

C

`135^(@)`

D

`45^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \((-2\hat{i} + 2\hat{j})\) and \(3\hat{i}\), we can follow these steps: ### Step 1: Identify the vectors Let vector **A** be \(\mathbf{A} = -2\hat{i} + 2\hat{j}\) and vector **B** be \(\mathbf{B} = 3\hat{i}\). ### Step 2: Use the formula for the angle between two vectors The angle \(\theta\) between two vectors can be calculated using the formula: \[ \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}| |\mathbf{B}|} \] ### Step 3: Calculate the dot product \(\mathbf{A} \cdot \mathbf{B}\) The dot product of vectors \(\mathbf{A}\) and \(\mathbf{B}\) is calculated as follows: \[ \mathbf{A} \cdot \mathbf{B} = (-2\hat{i} + 2\hat{j}) \cdot (3\hat{i}) = (-2 \cdot 3) + (2 \cdot 0) = -6 + 0 = -6 \] ### Step 4: Calculate the magnitudes of the vectors Now, we need to find the magnitudes of vectors \(\mathbf{A}\) and \(\mathbf{B}\): \[ |\mathbf{A}| = \sqrt{(-2)^2 + (2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2} \] \[ |\mathbf{B}| = \sqrt{(3)^2} = \sqrt{9} = 3 \] ### Step 5: Substitute the values into the formula Now substitute the values into the cosine formula: \[ \cos(\theta) = \frac{-6}{(2\sqrt{2})(3)} = \frac{-6}{6\sqrt{2}} = \frac{-1}{\sqrt{2}} \] ### Step 6: Find the angle \(\theta\) To find \(\theta\), take the inverse cosine: \[ \theta = \cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) \] The angle corresponding to \(-\frac{1}{\sqrt{2}}\) is \(135^\circ\). ### Final Answer Thus, the angle between the vectors \((-2\hat{i} + 2\hat{j})\) and \(3\hat{i}\) is: \[ \theta = 135^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the angle between the vectors a+b and a-b, if a=2hat(i)-hat(j)+3hat(k) and b=3hat(i)+hat(j)-2hat(k) .

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the angle between the vectors vec a\ a n d\ vec b where: vec a= hat i+2 hat j- hat k ,\ vec b= hat i- hat j+ hat k

Find the angle between the vectors 5hat i+3 hat j+4 hat k and 6 hat i-8 hat j- hat k .

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k