Home
Class 11
PHYSICS
Find the value of (vec(a) + vec(b)) xx (...

Find the value of `(vec(a) + vec(b)) xx (vec(a) - vec(b))`=

A

`(vec(a) xx vec(b))`

B

`2(vec(a) xx vec(b))`

C

`-2(vec(a).vec(b))`

D

`-2 (vec(a) xx vec(b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\), we can expand it using the distributive property of the cross product. ### Step-by-Step Solution: 1. **Expand the Expression**: \[ (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \vec{a} \times \vec{a} - \vec{a} \times \vec{b} + \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \] 2. **Evaluate the Cross Products**: - The cross product of any vector with itself is zero: \[ \vec{a} \times \vec{a} = \vec{0} \] \[ \vec{b} \times \vec{b} = \vec{0} \] - Therefore, we can simplify the expression: \[ \vec{0} - \vec{a} \times \vec{b} + \vec{b} \times \vec{a} - \vec{0} = -\vec{a} \times \vec{b} + \vec{b} \times \vec{a} \] 3. **Use the Property of Cross Products**: - We know that \(\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})\). Thus, we can substitute: \[ -\vec{a} \times \vec{b} - \vec{a} \times \vec{b} = -2(\vec{a} \times \vec{b}) \] 4. **Final Result**: \[ (\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = -2(\vec{a} \times \vec{b}) \] ### Conclusion: The value of \((\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})\) is \(-2(\vec{a} \times \vec{b})\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (vec(A) + vec(B)) .(vec(A) xx vec(B)) ?

The value of (vec(A)+vec(B)).(vec(A)xxvec(B)) is :-

If [ vec a vec b vec c]=2, then find the value of [( vec a+2 vec b- vec c)( vec a- vec b)( vec a- vec b- vec c)]dot

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

Given that vec(A) xx vec(B) = 0 , vec(B) xx vec(C ) = 0 , find the value of vec(A) xx vec(C ) " if " vec (A) != 0 , vec(B ) != 0 , vec(B) != 0 and vec(C ) != 0

If vec(a)+vec(b)+vec(c )=0 " and" |vec(a)|=3,|vec(b)|=5, |vec(c )|=7 , then find the value of vec(a)*vec(b)+vec(b)*vec(c )+vec(c )*vec(a) .

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

What is the angle be vec(a) xx vec(b) and vec(b) xx vec(a) ?

If vec(A)=hati +hat j and vec(B)=hati-hatj The value of (vec(A)+vec(B)).(vec(A)-vec(B)) is :