Home
Class 11
PHYSICS
(vec(a) - vec(b)) xx (vec(a) + vec(b)) ...

`(vec(a) - vec(b)) xx (vec(a) + vec(b))` is equal to

A

0

B

`vec(a) xx vec(b)`

C

`2(vec(a) xx vec(b))`

D

`|a|^(2) + |b|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})\), we will use the properties of the cross product. Let's break it down step by step. ### Step 1: Expand the Expression We start with the expression: \[ (\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) \] Using the distributive property of the cross product, we can expand this as follows: \[ = \vec{a} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} - \vec{b} \times \vec{b} \] ### Step 2: Simplify the Terms Now, we simplify each term: 1. \(\vec{a} \times \vec{a} = \vec{0}\) (the cross product of any vector with itself is zero). 2. \(\vec{b} \times \vec{b} = \vec{0}\) (similarly, the cross product of \(\vec{b}\) with itself is also zero). So, we can rewrite the expression: \[ = \vec{0} + \vec{a} \times \vec{b} - \vec{b} \times \vec{a} + \vec{0} \] This simplifies to: \[ = \vec{a} \times \vec{b} - \vec{b} \times \vec{a} \] ### Step 3: Apply the Anti-Symmetry Property Using the property of the cross product, which states that \(\vec{m} \times \vec{n} = -(\vec{n} \times \vec{m})\), we can rewrite \(-\vec{b} \times \vec{a}\) as: \[ = \vec{a} \times \vec{b} + \vec{a} \times \vec{b} \] This gives us: \[ = 2(\vec{a} \times \vec{b}) \] ### Final Result Thus, the final result of the expression \((\vec{a} - \vec{b}) \times (\vec{a} + \vec{b})\) is: \[ \boxed{2(\vec{a} \times \vec{b})} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

( vec a+2 vec b- vec c)dot{( vec a- vec b)xx( vec a- vec b- vec c)} is equal to [ vec a\ vec b\ vec c] b. c. 2[ vec a\ vec b\ vec c] d. 3[ vec a\ vec b\ vec c]

[( vec axx vec b)xx( vec bxx vec c)( vec bxx vec c)xx( vec cxx vec a)( vec cxx vec a)xx( vec axx vec b)] is equal to (where vec a , vec ba n d vec c are nonzero non-coplanar vector) [ vec a vec b vec c]^2 b. [ vec a vec b vec c]^3 c. [ vec a vec b vec c]^4 d. [ vec a vec b vec c]

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

Vectors vec a\ a n d\ vec b are inclined at angel theta=120^0 . If | vec a|=1,\ | vec b|=2,\ then [( vec a+3 vec b)xx(3 vec a- vec b)]^2 is equal to 300 b. 235 c. 275 d. 225

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

Vectors aa n db make an angle theta=(2pi)/3dot If | vec a|=1,| vec b|=2, then [( vec a+3 vec b)xx(3 vec a- vec b)]^2 is equal to 225 b. 250 c. 275 d. 300

Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec(A))

If vec a,vec b,vec c are three non-coplanar vectors represented by concurrent edges of a parallelopiped of volume 4, (vec a+vec b)+(vec bxx vec c)+(vec b+vec c).(vec c xx vec a) + (vec c +vec a).(vec axx vec b) is equal to