Home
Class 11
PHYSICS
The adjacent sides of a parallelogram is...

The adjacent sides of a parallelogram is represented by vectors `2 hat(i) + 3 hat(j) and hat(i) + 4hat(j)`. The area of the parallelogram is

A

5 units

B

3 units

C

8 units

D

11 units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the parallelogram formed by the vectors \( \mathbf{a} = 2 \hat{i} + 3 \hat{j} \) and \( \mathbf{b} = \hat{i} + 4 \hat{j} \), we can use the formula for the area of a parallelogram defined by two vectors, which is given by the magnitude of the cross product of the two vectors. ### Step-by-Step Solution: 1. **Identify the Vectors**: Let \[ \mathbf{a} = 2 \hat{i} + 3 \hat{j} \] \[ \mathbf{b} = \hat{i} + 4 \hat{j} \] 2. **Set Up the Cross Product**: The area of the parallelogram can be found using the cross product \( \mathbf{a} \times \mathbf{b} \). We will use the determinant method to calculate this. The cross product can be represented as: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 0 \\ 1 & 4 & 0 \end{vmatrix} \] 3. **Calculate the Determinant**: To evaluate the determinant, we can expand it as follows: \[ \mathbf{a} \times \mathbf{b} = \hat{i} \begin{vmatrix} 3 & 0 \\ 4 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 0 \\ 1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} \] Now, calculating each of these 2x2 determinants: - For \( \hat{i} \): \[ \begin{vmatrix} 3 & 0 \\ 4 & 0 \end{vmatrix} = (3 \cdot 0) - (0 \cdot 4) = 0 \] - For \( \hat{j} \): \[ \begin{vmatrix} 2 & 0 \\ 1 & 0 \end{vmatrix} = (2 \cdot 0) - (0 \cdot 1) = 0 \] - For \( \hat{k} \): \[ \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = (2 \cdot 4) - (3 \cdot 1) = 8 - 3 = 5 \] Putting it all together: \[ \mathbf{a} \times \mathbf{b} = 0 \hat{i} - 0 \hat{j} + 5 \hat{k} = 5 \hat{k} \] 4. **Find the Magnitude of the Cross Product**: The magnitude of the cross product \( |\mathbf{a} \times \mathbf{b}| \) is: \[ |\mathbf{a} \times \mathbf{b}| = |5 \hat{k}| = 5 \] 5. **Conclusion**: The area of the parallelogram is equal to the magnitude of the cross product: \[ \text{Area} = 5 \text{ square units} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat(j) + 3hat(k) and q = 3hat(i) + 2hat(j) - hat(k) . Then the area of the parallelogram is :

Two adjacent sides of a parallelogram are respectively by the two vectors hat(i)+2hat(j)+3hat(k) and 3hat(i)-2hat(j)+hat(k) . What is the area of parallelogram?

The adjacent sides of a parallelogram are hat(i) + 2 hat(j) + 3 hat(k) and 2 hat (i) - hat(j) + hat(k) . Find the unit vectors parallel to diagonals.

If the sides AB and AD of a parallelogram ABCD are represented by the vector 2 hat(i) + 4 hat(j) - 5 hat(k) and hat(i) + 2 hat(j) + 3 hat(k) , then a unit vector along vec( AC ) is

The adjacent sides of a parallelogram are represented by the vectors vec a= hat i+ hat j- hat k\ a n d\ vec b=-2 hat i+ hat j+2 hat kdot Find unit vectors parallel to the diagonals of the parallelogram.

Unit vector perpendicular to the vectors hat(i) - hat(j) and hat(i) + hat(j) is

The diagonals of a parallelogram are given by the vectors (3 hat(i) + hat(j) + 2hat(k)) and ( hat(i) - 3hat(j) + 4hat(k)) in m . Find the area of the parallelogram .

Find the area of the parallelogram determined by the vectors: 2 hat i\ a n d\ 3 hat j

Find the area of the parallelogram determined by the vectors: 2 hat i+ hat j+3 hat k\ a n d\ hat i- hat j

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .