Home
Class 11
PHYSICS
For vectors vec(A) = (2i + 3j - 2k), vec...

For vectors `vec(A) = (2i + 3j - 2k), vec(B) = (5i + nj + k) and vec(C ) = (-i + 2j + 3k)` to be coplanar, the value of n is

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( n \) such that the vectors \( \vec{A} = (2\hat{i} + 3\hat{j} - 2\hat{k}) \), \( \vec{B} = (5\hat{i} + n\hat{j} + \hat{k}) \), and \( \vec{C} = (-\hat{i} + 2\hat{j} + 3\hat{k}) \) are coplanar, we will use the condition that the scalar triple product (or box product) of the three vectors must be zero. ### Step 1: Set up the determinant The scalar triple product can be computed using the determinant of a matrix formed by the components of the vectors: \[ \begin{vmatrix} 2 & 3 & -2 \\ 5 & n & 1 \\ -1 & 2 & 3 \end{vmatrix} \] ### Step 2: Calculate the determinant We will expand this determinant using the first row: \[ = 2 \begin{vmatrix} n & 1 \\ 2 & 3 \end{vmatrix} - 3 \begin{vmatrix} 5 & 1 \\ -1 & 3 \end{vmatrix} - 2 \begin{vmatrix} 5 & n \\ -1 & 2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} n & 1 \\ 2 & 3 \end{vmatrix} = n \cdot 3 - 1 \cdot 2 = 3n - 2 \] 2. For the second determinant: \[ \begin{vmatrix} 5 & 1 \\ -1 & 3 \end{vmatrix} = 5 \cdot 3 - 1 \cdot (-1) = 15 + 1 = 16 \] 3. For the third determinant: \[ \begin{vmatrix} 5 & n \\ -1 & 2 \end{vmatrix} = 5 \cdot 2 - n \cdot (-1) = 10 + n \] ### Step 4: Substitute back into the determinant equation Now substituting these back into the determinant expression: \[ = 2(3n - 2) - 3(16) - 2(10 + n) \] ### Step 5: Simplify the expression Expanding this gives: \[ = 6n - 4 - 48 - 20 - 2n \] Combining like terms: \[ = (6n - 2n) + (-4 - 48 - 20) = 4n - 72 \] ### Step 6: Set the determinant to zero For the vectors to be coplanar, we set the determinant to zero: \[ 4n - 72 = 0 \] ### Step 7: Solve for \( n \) Solving for \( n \): \[ 4n = 72 \implies n = \frac{72}{4} = 18 \] ### Conclusion Thus, the value of \( n \) for which the vectors are coplanar is: \[ \boxed{18} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vectors vec a= hat i+2 hat j- hat k , vec b=2 hat i- hat j+ hat k and vec c=lambda hat i+ hat j+2 hat k are coplanar, then find the value of (lambda-4) .

If the vectors vec (a) = 2 hat (i) - hat (j) + hat (k) , vec ( b) = hat (i) + 2 hat (j) - 3 hat (k) and vec(c ) = 3 hat (i) + lambda hat (j) + 5 hat (k) are coplanar , find the value of lambda

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

Find lambda so that the vectors vec a=2 hat i- hat j+ hat k ,\ vec b= hat i+2 hat j-3 hat k\ a n d\ vec c=3 hat i+lambda hat j+5 hat k are coplanar.

Show that the vectors vec a=-2 hat i-2 hat j+4 hat k ,\ vec b=-2 hat i+4 hat j-2 hat k\ a n d\ vec c=4 hat i-2 hat j-2 hat k are coplanar.

For given vector, vec a = 2 hat i j +2 hat k and vec b = - hat i + hat j - hat k , find the unit vector in the direction of the vector vec a + vec b .

Show that the two vectors vec(A) and vec(B) are parallel , where vec(A) = hat(i) + 2 hat(j) + hat(k) and vec(B) = 3 hat(i) + 6 hat(j) + 3 hat(k)

Find a unit vector perpendicular to each of the vectors vec(a) + vec(b) and vec (a) - vec(b) where vec(a) = 3 hat (i) + 2 hat (j) + 2 hat (k) and vec(b) = hat (i) + 2 hat (j) - 2 hat (k) .

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be