Home
Class 12
PHYSICS
Find V(ab) in an electric field vec(E)=(...

Find `V_(ab)` in an electric field `vec(E)=(2hat(i)+3hat(j)+4hat(k))N//C` where `vec(r)_(a)=(hat(i)-2hat(j)+hat(k))mandvec(r_(b))=(2hat(i)+hat(j)-2hat(k))m`

A

2 volt

B

`-1` volt

C

1 volt

D

3 volt

Text Solution

AI Generated Solution

The correct Answer is:
To find the potential difference \( V_{ab} \) in the given electric field, we can follow these steps: ### Step 1: Understand the relationship between electric field and potential difference The potential difference \( V_{ab} \) between points \( a \) and \( b \) in an electric field \( \vec{E} \) is given by the equation: \[ V_{ab} = V_a - V_b = -\int_{b}^{a} \vec{E} \cdot d\vec{r} \] where \( d\vec{r} \) is the differential displacement vector along the path from point \( b \) to point \( a \). ### Step 2: Define the electric field and position vectors The electric field is given as: \[ \vec{E} = 2\hat{i} + 3\hat{j} + 4\hat{k} \, \text{N/C} \] The position vectors for points \( a \) and \( b \) are: \[ \vec{r}_a = \hat{i} - 2\hat{j} + \hat{k} \, \text{m} \] \[ \vec{r}_b = 2\hat{i} + \hat{j} - 2\hat{k} \, \text{m} \] ### Step 3: Determine the limits of integration We need to calculate the displacement vector \( d\vec{r} \) from point \( b \) to point \( a \): \[ d\vec{r} = \vec{r}_a - \vec{r}_b = (\hat{i} - 2\hat{j} + \hat{k}) - (2\hat{i} + \hat{j} - 2\hat{k}) = -\hat{i} - 3\hat{j} + 3\hat{k} \] ### Step 4: Set up the integral Now we can express the integral: \[ V_{ab} = -\int_{b}^{a} \vec{E} \cdot d\vec{r} \] Substituting \( \vec{E} \) and \( d\vec{r} \): \[ V_{ab} = -\int_{b}^{a} (2\hat{i} + 3\hat{j} + 4\hat{k}) \cdot (-\hat{i} - 3\hat{j} + 3\hat{k}) \, dr \] ### Step 5: Calculate the dot product Calculating the dot product: \[ \vec{E} \cdot d\vec{r} = 2(-1) + 3(-3) + 4(3) = -2 - 9 + 12 = 1 \] ### Step 6: Integrate Since the dot product is constant, we can integrate directly: \[ V_{ab} = -\int_{b}^{a} 1 \, dr = -\left[r\right]_{b}^{a} = -\left(a - b\right) \] ### Step 7: Evaluate the limits The limits of integration are the coordinates of points \( a \) and \( b \): \[ V_{ab} = -\left(1 - 2\right) = -(-1) = 1 \, \text{volt} \] ### Final Answer Thus, the potential difference \( V_{ab} \) is: \[ V_{ab} = 1 \, \text{volt} \] ---
Promotional Banner

Topper's Solved these Questions

  • ELECTROSTATICS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - IV) (LEVEL - II (ADVANCED) STRAIGHT OBJECTIVE TYPE QUESTIONS)|6 Videos
  • ELECTROSTATICS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - IV) (LEVEL - II (ADVANCED) MORE THAN ONE CORRECT ANSWER TYPE QUESTIONS)|4 Videos
  • ELECTROSTATICS

    AAKASH SERIES|Exercise LECTURE SHEET (EXERCISE - III) (LEVEL - II (ADVANCED) INTEGER TYPE QUESTIONS)|2 Videos
  • ELECTROMAGNETICS

    AAKASH SERIES|Exercise ADDITIONAL EXERCISE|13 Videos
  • ELEMENTS OF VECTORS

    AAKASH SERIES|Exercise QUESTIONS FOR DESCRIPTIVE ANSWERS|10 Videos

Similar Questions

Explore conceptually related problems

Find V_(ab) in an electric fiels vec E = (2 hat I + 3 hat j + 4 hat k) NC^-1 where vec r_a = (hat I - 2 hat j + hat k) m and vec r_b = (2 hat i + hat j - 2 hat k) m .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)= (hat(i)-2hat(j)+3hat(k)) .

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is