Home
Class 11
PHYSICS
The density of the atmosphere at sea lev...

The density of the atmosphere at sea level is `1.29kg//m^(3)`. Assume that it does not change with altitude. Then how high would the atmosphere extend?

A

`3km`

B

`7km`

C

`8km`

D

`9km`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The density of the atmosphere at sea level is 1.29 kg//m^(3) . Assume that it does not change with altitude. Then how high would the atmosphere extend ? g=9.8 ms^(-2) . Atmospheric pressure =1.013 xx 10^(5) Pa .

The density of the atmosphere at sea level is 1.29 kg//m^(3) . Assume that it does not change with altitude, how high should the atmosphere extend?

The density of water at 4^0C is supposed to be 1000 kg m^(-3) . It is same at the sea level and at a high altitude?

Assuming that the atmosphere has the same density anywhere as at sea level (rho =1.3 kgm^(-3)) and g to be constant (g=10 ms^(-2)) . What should be the approximate height of atmosphere ? (rho_(0)=1.01xx10^(5)Nm^(-2))

If the density of a gas at the sea level at 0^(@)C is 1.29 kg m^(-3) , what is its molar mass? (Assume that pressure is equal to 1"bar" .)

A: The electrical. Conductivity of the Earth's atmosphere does not change with altitude. R : Cosmic rays from outer space entering the earth's atmosphere do not affect it.

The density of asir ner earth's surface is 1.3kgm^-3 and the atmospheric pressure is 1.0xx10^5Nm^-2 . If the atmosphere had uniform density, same as that observed at the surface of the earth what would be the height of the atmosphere to exert the same pressure?

A rain drop with radus 1.5 mm falls from a cloud at a height 1200 m from ground . The density of water is 1000 kg//m^(3) and density of air is 1.2 kg//m^(3) . Assume the drop was spherical throughout the fall and there is no air drag. The impact speed of the drop will be :

Given the density of air is 1.29 kg m^(-3) . Then, the relative density of air is ________.

Consider an ideal gas model with an addition assumption. Instead of Maxwellian distribution of speed, all gas molecules at a certain level (say sea level) move with same speed equal to root mean square speed at a given temperature. If the temperature at sea level is 300 K, upto what height the oxygen gas would exist in atmosphere. take g=10m//s^(2) as constant.