Home
Class 11
PHYSICS
A particle of mass m moving along x-axis...

A particle of mass `m` moving along x-axis has a potential energy `U(x)=a+bx^2` where a and b are positive constant. It will execute simple harmonic motion with a frequency determined by the value of

A

b alone

B

b and a alone

C

b and m alone

D

b, a and m alone

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

A particle of mass m moves in a one dimensional potential energy U(x)=-ax^2+bx^4 , where a and b are positive constant. The angular frequency of small oscillation about the minima of the potential energy is equal to

A particle of mass m in a unidirectional potential field have potential energy U(x)=alpha+2betax^(2) , where alpha and beta are positive constants. Find its time period of oscillations.

A partical of mass m is moving along the x-axis under the potential V (x) =(kx^2)/2+lamda Where k and x are positive constants of appropriate dimensions . The particle is slightly displaced from its equilibrium position . The particle oscillates with the the angular frequency (omega) given by

A body of mass 20 g connected to a spring of spring constant k, executes simple harmonic motion with a frequency of (5//pi) Hz. The value of spring constant is

A particle free to move along x-axis is acted upon by a force F=-ax+bx^(2) whrte a and b are positive constants. , the correct variation of potential energy function U(x) is best represented by.

A particle of mass (m) is executing oscillations about the origin on the (x) axis. Its potential energy is V(x) = k|x|^3 where (k) is a positive constant. If the amplitude of oscillation is a, then its time period (T) is.

A particle of mass (m) is executing oscillations about the origin on the (x) axis. Its potential energy is V(x) = k|x|^3 where (k) is a positive constant. If the amplitude of oscillation is a, then its time period (T) is.

A particle of mass m is executing oscillation about the origin on X- axis Its potential energy is V(x)=kIxI Where K is a positive constant If the amplitude oscillation is a, then its time period T is proportional

A particle of mass m is moving in a potential well, for which the potential energy is given by U(x) = U_(0)(1-cosax) where U_(0) and a are positive constants. Then (for the small value of x)

The total energy of a particle having a displacement x, executing simple harmonic motion is