Home
Class 11
PHYSICS
Find the work done in stretching a wire ...

Find the work done in stretching a wire Im long and area of cross section 0.03 cm under a load of 100 N if Young.s modulus of the material of the wire is `2 xx 10^(11)N//m^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the work done in stretching a wire, we can use the formula for work done in terms of force and change in length. The steps to solve the problem are as follows: ### Step 1: Understand the given values - Length of the wire (L) = 1 m - Cross-sectional area (A) = 0.03 cm² = 0.03 × 10⁻⁴ m² (convert cm² to m²) - Load (Force, F) = 100 N - Young's modulus (Y) = 2 × 10¹¹ N/m² ### Step 2: Calculate the change in length (ΔL) Using the formula for Young's modulus: \[ Y = \frac{\text{Stress}}{\text{Strain}} = \frac{F/A}{\Delta L/L} \] Rearranging the formula gives: \[ \Delta L = \frac{F \cdot L}{A \cdot Y} \] Substituting the values: \[ \Delta L = \frac{100 \, \text{N} \cdot 1 \, \text{m}}{0.03 \times 10^{-4} \, \text{m}^2 \cdot 2 \times 10^{11} \, \text{N/m}^2} \] ### Step 3: Calculate ΔL Calculating the denominator: \[ 0.03 \times 10^{-4} \cdot 2 \times 10^{11} = 0.03 \cdot 2 \cdot 10^{7} = 0.06 \times 10^{7} = 6 \times 10^{5} \] Now substituting back: \[ \Delta L = \frac{100}{6 \times 10^{5}} \] Calculating: \[ \Delta L = \frac{100}{600000} = \frac{1}{6000} \approx 1.67 \times 10^{-4} \, \text{m} \] ### Step 4: Calculate the work done (W) The work done in stretching the wire is given by: \[ W = \frac{1}{2} \cdot F \cdot \Delta L \] Substituting the values: \[ W = \frac{1}{2} \cdot 100 \cdot 1.67 \times 10^{-4} \] Calculating: \[ W = 50 \cdot 1.67 \times 10^{-4} = 8.35 \times 10^{-3} \, \text{J} \] ### Final Answer The work done in stretching the wire is approximately: \[ W \approx 8.35 \times 10^{-3} \, \text{J} \] ---
Promotional Banner