Home
Class 11
PHYSICS
A wire 3m long and diameter 0.3 mm is st...

A wire 3m long and diameter 0.3 mm is stretched by a load of 2kg. If the elongation is 2mm, find the Young.s modulus of the material of the wire and the potential energy stored in the wire.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the Young's modulus of the material of the wire and the potential energy stored in the wire. Let's go through the steps systematically. ### Step 1: Calculate the Stress Stress (σ) is defined as the force (F) applied per unit area (A) of the wire. 1. **Calculate the force (F)**: The force applied is due to the weight of the load: \[ F = mg \] where \( m = 2 \, \text{kg} \) and \( g = 9.81 \, \text{m/s}^2 \). \[ F = 2 \times 9.81 = 19.62 \, \text{N} \approx 20 \, \text{N} \] 2. **Calculate the cross-sectional area (A)**: The area of the wire can be calculated using the formula for the area of a circle: \[ A = \pi r^2 \] The diameter of the wire is given as \( 0.3 \, \text{mm} \), so the radius \( r \) is: \[ r = \frac{0.3 \, \text{mm}}{2} = 0.15 \, \text{mm} = 0.15 \times 10^{-3} \, \text{m} = 1.5 \times 10^{-4} \, \text{m} \] Now, substituting the radius into the area formula: \[ A = \pi (1.5 \times 10^{-4})^2 = \pi (2.25 \times 10^{-8}) \approx 7.06858 \times 10^{-8} \, \text{m}^2 \] 3. **Calculate the stress (σ)**: \[ \sigma = \frac{F}{A} = \frac{20 \, \text{N}}{7.06858 \times 10^{-8} \, \text{m}^2} \approx 2.83 \times 10^8 \, \text{N/m}^2 \] ### Step 2: Calculate the Strain Strain (ε) is defined as the change in length (ΔL) divided by the original length (L). 1. **Given values**: - Change in length (ΔL) = 2 mm = \( 2 \times 10^{-3} \, \text{m} \) - Original length (L) = 3 m 2. **Calculate the strain (ε)**: \[ \epsilon = \frac{\Delta L}{L} = \frac{2 \times 10^{-3}}{3} \approx 6.67 \times 10^{-4} \] ### Step 3: Calculate Young's Modulus (E) Young's modulus (E) is defined as the ratio of stress to strain: \[ E = \frac{\sigma}{\epsilon} \] Substituting the values we calculated: \[ E = \frac{2.83 \times 10^8}{6.67 \times 10^{-4}} \approx 4.25 \times 10^{11} \, \text{N/m}^2 \] ### Step 4: Calculate the Potential Energy Stored in the Wire The potential energy (U) stored in the wire can be calculated using the formula: \[ U = \frac{1}{2} \sigma \epsilon V \] where \( V \) is the volume of the wire, given by \( V = A \times L \). 1. **Calculate the volume (V)**: \[ V = A \times L = (7.06858 \times 10^{-8}) \times 3 \approx 2.12 \times 10^{-7} \, \text{m}^3 \] 2. **Calculate the potential energy (U)**: \[ U = \frac{1}{2} \sigma \epsilon V = \frac{1}{2} \times (2.83 \times 10^8) \times (6.67 \times 10^{-4}) \times (2.12 \times 10^{-7}) \] \[ U \approx 0.92 \times 10^{-5} \, \text{J} \approx 0.92 \, \text{J} \] ### Final Answers: - Young's Modulus \( E \approx 4.25 \times 10^{11} \, \text{N/m}^2 \) - Potential Energy \( U \approx 0.92 \, \text{J} \)
Promotional Banner