Home
Class 11
PHYSICS
If vecA = (2hati + 3hatj) and vecB =(ha...

If `vecA = (2hati + 3hatj)` and `vecB =(hati - hatj)` then component of `vecA` perpendicular to vector `vecB` and in the same plane is:

A

`5/2(hati + hatj)`

B

`5/sqrt(2)(hati + hatj)`

C

`sqrt(5)/2(hati + hatj)`

D

`5/sqrt(2)(hati + hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the component of vector \(\vec{A}\) that is perpendicular to vector \(\vec{B}\) in the same plane, we can follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = 2\hat{i} + 3\hat{j} \] \[ \vec{B} = \hat{i} - \hat{j} \] ### Step 2: Find the dot product of \(\vec{A}\) and \(\vec{B}\) The dot product \(\vec{A} \cdot \vec{B}\) is calculated as follows: \[ \vec{A} \cdot \vec{B} = (2\hat{i} + 3\hat{j}) \cdot (\hat{i} - \hat{j}) = 2(\hat{i} \cdot \hat{i}) + 3(\hat{j} \cdot -\hat{j}) = 2(1) + 3(-1) = 2 - 3 = -1 \] ### Step 3: Calculate the magnitude of vector \(\vec{B}\) The magnitude of \(\vec{B}\) is given by: \[ |\vec{B}| = \sqrt{(1)^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] ### Step 4: Find the component of \(\vec{A}\) along \(\vec{B}\) The component of \(\vec{A}\) along \(\vec{B}\) is given by: \[ \text{Component of } \vec{A} \text{ along } \vec{B} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|^2} \vec{B} \] Substituting the values: \[ \text{Component of } \vec{A} \text{ along } \vec{B} = \frac{-1}{2} (\hat{i} - \hat{j}) = -\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j} \] ### Step 5: Find the component of \(\vec{A}\) perpendicular to \(\vec{B}\) Using the relation: \[ \vec{A} = \vec{A}_{\parallel} + \vec{A}_{\perpendicular} \] We can rearrange it to find \(\vec{A}_{\perpendicular}\): \[ \vec{A}_{\perpendicular} = \vec{A} - \vec{A}_{\parallel} \] Substituting the values: \[ \vec{A}_{\perpendicular} = (2\hat{i} + 3\hat{j}) - \left(-\frac{1}{2}\hat{i} + \frac{1}{2}\hat{j}\right) \] \[ = 2\hat{i} + 3\hat{j} + \frac{1}{2}\hat{i} - \frac{1}{2}\hat{j} \] \[ = \left(2 + \frac{1}{2}\right)\hat{i} + \left(3 - \frac{1}{2}\right)\hat{j} \] \[ = \frac{5}{2}\hat{i} + \frac{5}{2}\hat{j} \] ### Final Result Thus, the component of \(\vec{A}\) perpendicular to \(\vec{B}\) is: \[ \vec{A}_{\perpendicular} = \frac{5}{2} \hat{i} + \frac{5}{2} \hat{j} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vecA = 3hati - 4hatj and vecB = -hati - 4hatj , calculate the direction of vecA- vecB .

If veca = 2hati -3hatj-1hatk and vecb =hati + 4hatj -2hatk " then " veca xx vecb is

If vecA=3hati-4hatj and vecB=- hati- 4hatj , calculate the direction of vecA+vecB

If vecA=2hati + 3hatj and vecB= 5hati + 7hatj , then the vector having the magnitude of vecA and direction of vecB would be

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca along vecb .

If veca=4hati+6hatj and vecb=3hati+4hatk find the vector component of veca alond vecb .

If vecA=2hati+3hatj-hatk and vecB=-hati+3hatj+4hatk then projection of vecA on vecB will be

If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

If vecA=4hati-3hatj and vecB=6hati+8hatj then magnitude and direction of vecA+vecB will be

If veca=2hati+2hatj+3hatk, vecb=-hati+2hatj +k and vecc=3hati+hatj such that veca+lamdavecb is perpendicular to vector c then the find the value of lamda.