Home
Class 11
PHYSICS
If vecA + vecB = vecR and 2vecA + vecB...

If `vecA + vecB = vecR` and `2vecA + vecB` s perpendicular to `vecB` then

A

A = R

B

B = 2R

C

B = R

D

B=A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given vectors and the conditions provided. ### Step 1: Understand the Given Information We are given two vectors: 1. \( \vec{A} + \vec{B} = \vec{R} \) 2. \( 2\vec{A} + \vec{B} \) is perpendicular to \( \vec{B} \) ### Step 2: Use the Condition of Perpendicularity Since \( 2\vec{A} + \vec{B} \) is perpendicular to \( \vec{B} \), we can use the dot product to express this condition: \[ (2\vec{A} + \vec{B}) \cdot \vec{B} = 0 \] ### Step 3: Expand the Dot Product Expanding the dot product gives: \[ 2\vec{A} \cdot \vec{B} + \vec{B} \cdot \vec{B} = 0 \] This simplifies to: \[ 2\vec{A} \cdot \vec{B} + |\vec{B}|^2 = 0 \] ### Step 4: Rearrange the Equation Rearranging the equation gives: \[ 2\vec{A} \cdot \vec{B} = -|\vec{B}|^2 \] Dividing both sides by 2: \[ \vec{A} \cdot \vec{B} = -\frac{|\vec{B}|^2}{2} \] ### Step 5: Substitute into the Magnitude Equation Now, we know that: \[ |\vec{A} + \vec{B}| = |\vec{R}| \] Taking the magnitude of both sides: \[ |\vec{A} + \vec{B}| = |\vec{R}| \] Using the formula for the magnitude of the sum of two vectors: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2\vec{A} \cdot \vec{B}} \] ### Step 6: Substitute \( \vec{A} \cdot \vec{B} \) Substituting \( \vec{A} \cdot \vec{B} = -\frac{|\vec{B}|^2}{2} \) into the equation: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 + 2\left(-\frac{|\vec{B}|^2}{2}\right)} \] This simplifies to: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2 + |\vec{B}|^2 - |\vec{B}|^2} \] Thus: \[ |\vec{A} + \vec{B}| = \sqrt{|\vec{A}|^2} \] Which means: \[ |\vec{A} + \vec{B}| = |\vec{A}| \] ### Step 7: Relate to \( |\vec{R}| \) Since \( |\vec{A} + \vec{B}| = |\vec{R}| \), we have: \[ |\vec{R}| = |\vec{A}| \] Thus, we conclude: \[ |\vec{A}| = |\vec{R}| \] ### Final Result This implies that the magnitude of vector \( \vec{A} \) is equal to the magnitude of vector \( \vec{R} \). ### Conclusion Thus, the final relation is: \[ |\vec{A}| = |\vec{R}| \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If for two vector vecA and vecB , sum (vecA+vecB) is perpendicular to the difference (vecA-vecB) . The ratio of their magnitude is

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

In the following questions a statement of assertion (A) is followed by a statement of reason ( R). A : If vecA bot vecB, then |vecA+vecB|=|A-vecB| . R: If vecA bot vecB then (vecA+vecB) is perpendicular to vecA-vecB .

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If non-zero vectors veca and vecb are perpendicular to each other, then the solution of the equation vecr × veca = vecb is given by

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

Given vec(a) is perpendicular to vecb+vecc , vecb is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|