Home
Class 11
PHYSICS
An ice cube of mass 0.1 kg at 0^@C is pl...

An ice cube of mass 0.1 kg at `0^@C` is placed in an isolated container which is at `227^@C`. The specific heat s of the container varies with temperature T according to the empirical relation `s=A+BT`, where `A= 100 cal//kgK and B = 2xx (10^-2) cal//kg`. If the final temperature of the container is `27^@C`, determine the mass of the container.
(Latent heat of fusion for water = `8xx (10^4) cal//kg`, specific heat of water `=10^3 cal//kg-K`).

A

0.495 kg

B

0.125 kg

C

0.3 kg

D

0.9 kg

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

An ice cube of mass 0.1 kg at 0^@C is placed in an isolated container which is at 227^@C . The specific heat s of the container varies with temperature T according to the empirical relation s=A+BT , where A= 100 cal//kg.K and B = 2xx 10^-2 cal//kg.K^2 . If the final temperature of the container is 27^@C , determine the mass of the container. (Latent heat of fusion for water = 8xx 10^4 cal//kg , specific heat of water =10^3 cal//kg.K ).

An ice cube of mass 0.1 kg at 0^@C is placed in an isolated container which is at 227^@C . The specific heat s of the container varies with temperature T according to the empirical relation s=A+BT , where A= 100 cal//kg.K and B = 2xx 10^-2 cal//kg.K^2 . If the final temperature of the container is 27^@C , determine the mass of the container. (Latent heat of fusion for water = 8xx 10^4 cal//kg , specific heat of water =10^3 cal//kg.K ).

An ice cube of mass 0.1 kg at 0^@C is placed in an isolated container which is at 227^@C . The specific heat s of the container varies with temperature T according to the empirical relation s=A+BT , where A= 100 cal//kg.K and B = 2xx 10^-2 cal//kg.K^2 . If the final temperature of the container is 27^@C , determine the mass of the container. (Latent heat of fusion for water = 8xx 10^4 cal//kg , specific heat of water =10^3 cal//kg.K ).

If 10 g of ice at 0^(@)C is mixed with 10 g of water at 40^(@)C . The final mass of water in mixture is (Latent heat of fusion of ice = 80 cel/g, specific heat of water =1 cal/g""^(@)C )

The amount of heat required to raise the temperature of 75 kg of ice at 0^oC to water at 10^oC is (latent heat of fusion of ice is 80 cal/g, specific heat of water is 1 cal/ g^oC )

1 g of steam at 100^@C and an equal mass of ice at 0^@C are mixed. The temperature of the mixture in steady state will be (latent heat of steam =540 cal//g , latent heat of ice =80 cal//g ,specific heat of water =1 cal//g^@C )

The specific heat of a substance varies with temperature according to c =0.2 +0.16 T + 0.024 T^(2) with T in "^(@)c and c is cal//gk . Find the energy (in cal) required to raise the temp of 2g substance from 0^(@)to 5^(@)C

60 g of ice at 0^(@)C is added to 200 g of water initially at 70^(@)C in a calorimeter of unknown water equivalent W. If the final temperature of the mixture is 40^(@)C , then the value of W is [Take latent heat of fusion of ice L_(f) = 80 cal g^(-1) and specific heat capacity of water s = 1 cal g^(-1).^(@)C^(-1) ]

A colorimeter contains 400 g of water at a temperature of 5^(@)C . Then, 200 g of water at a temperature of +10^(@)C and 400 g of ice at a temperature of -60^(@)C are added. What is the final temperature of the contents of calorimeter? Specific heat capacity of water -1000 cal //kg//K Specific latent heat of fusion of ice =80xx1000 cal //kg Relative specific heat of ice =0.5

50 g of ice at 0^@C is mixed with 50 g of water at 80^@C . The final temperature of the mixture is (latent heat of fusion of ice =80 cal //g , s_(w) = 1 cal //g ^@C)