Home
Class 11
PHYSICS
If vec(P) = hat(i) + hat(j) + hat(k), it...

If `vec(P) = hat(i) + hat(j) + hat(k)`, its direction cosines are

A

1,1,1

B

`1//sqrt(3), 1//sqrt(3), 1//sqrt(3)`

C

`sqrt(3), sqrt(3), sqrt(3)`

D

0,0,0

Text Solution

AI Generated Solution

The correct Answer is:
To find the direction cosines of the vector \(\vec{P} = \hat{i} + \hat{j} + \hat{k}\), we can follow these steps: ### Step 1: Identify the components of the vector The vector \(\vec{P}\) can be expressed in terms of its components along the x, y, and z axes: - The coefficient of \(\hat{i}\) (x-component) is \(a = 1\). - The coefficient of \(\hat{j}\) (y-component) is \(b = 1\). - The coefficient of \(\hat{k}\) (z-component) is \(c = 1\). ### Step 2: Calculate the magnitude of the vector The magnitude of the vector \(\vec{P}\) is given by: \[ |\vec{P}| = \sqrt{a^2 + b^2 + c^2} = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] ### Step 3: Calculate the direction cosines The direction cosines \(\alpha\), \(\beta\), and \(\gamma\) are defined as: \[ \alpha = \frac{a}{|\vec{P}|}, \quad \beta = \frac{b}{|\vec{P}|}, \quad \gamma = \frac{c}{|\vec{P}|} \] Substituting the values: - For \(\alpha\): \[ \alpha = \frac{1}{\sqrt{3}} \] - For \(\beta\): \[ \beta = \frac{1}{\sqrt{3}} \] - For \(\gamma\): \[ \gamma = \frac{1}{\sqrt{3}} \] ### Step 4: Write the final result The direction cosines of the vector \(\vec{P}\) are: \[ \alpha = \frac{1}{\sqrt{3}}, \quad \beta = \frac{1}{\sqrt{3}}, \quad \gamma = \frac{1}{\sqrt{3}} \] ### Final Answer Thus, the direction cosines are \(\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(A)= 2hat(i)+4hat(j)-5hat(k) then the direction of cosins of the vector vec(A) are

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec( a) = hat(i) + hat(j) + p hat(k) and vec( b) = vec( i) + hat(j) + hat(k) then | vec( a) + hat(b) | = | vec( a) |+ | vec( b)| holds for

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

If vec(A) = hat(i) + hat(j) + hat(k) and B = -hat(i) - hat(j) - hat(k) . Then angle made by (vec(A) - vec(B)) with vec(A) is :

Write the direction ratios of the vector -> a= hat i+ hat j-2 hat k and hence calculate its direction cosines.