Home
Class 11
PHYSICS
A physical quantity P is described by th...

 A physical quantity P is described by the relation P=a^(1/2)b^(2)c^(3)d^(-4). If the relative errors in the measurements a, b, c and d respectively, are 2%, 1%, 3%, and 5%, then the relative error in P will be :

A

0.25

B

0.12

C

0.08

D

0.32

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

A physical quantity x is calculated from the relation x = ( a^(2) b^(3))/(c sqrt( d)) . If the percentage error in a, b , c , and d are 2% , 1% , 3%, and 4% , respectively , what is the percentage error in x ?

A physical quantity Q is related to measurable quantities L,M and N as Q = KL^(-2)M^(2)N^(3) , where k is constant. If the % errors in the measurements of L, M and N are respectively 1%, 2% and 1%, then the % error in hc mcasurement of Q is

A physical quantity X is give by the relation X = (2h^(3)I^(2))/(2sqrt(n)) The percentage error in the meansurement of k ,I,m and n are 1% ,2%, 3% and 4% respectively The value of X is uncertain by

An experiment from X = (a^(1//2) b^(2))/( c^(3)) . If the percentage errors in a, b , and c are +- 1% , +- 3% , and +- 2% , respectively , then the percentage error in X can be

Find the relative error in Z, if Z=A^(4)B^(1//3)//CD^(3//2) and the percentage error in the measurements of A,B,C and D are 4%,2%,3% and 1% respectively.

A physcial quantity X is related to four measurable quantites a, b, c and d as follows : X = a^2 b^3 c^(5//2) d^(-2) The percentage error in the measurement of a, b, c and d are 1% , 2%, 3% and 4%, respectively. What is the percentage error in quantity X ? if the value of X calculated on the basis of the above relation is 2.763, to what value should you round off the result ?

A physical quantity z depends on four observables a, b, c and d, as z = (a^2b^(2/3))/(sqrtc d^3) . The percentages of error in the measurement of a, b, c and d are 2%, 1.5%, 4% and 2.5% respectively. The percentage of error in z is :

A physical quantity X is related to three observable a,b and c as X=(b^(2)sqrt(a))/c . The errors of measuremnts in a,b and c are 4%, 3% and 2% respectively. What is the percentage error in the quality X?

A physical quantity P is related to four observably a,b,c and d as follows P=a^(3)b^(3)//c^(1//2) d. The percentage errors of measurement in a,b,c and d are 1%, 3%, 4% and 2% respectively. What is the percentage error in the quantity P? If the value of P calculated using the above relation turns out to be 3.763, to what value should you round off the result?