Home
Class 11
PHYSICS
If the particle is moving along a straig...

If the particle is moving along a straight line given by the relation `x=2-3t +4t^3` where s is in cms., and t in sec. Its average velocity during the third sec is

A

73 cm/s

B

80 cm/s

C

85 cm/s

D

90 cm/s

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The position of an object moving on a straight line is defined by the relation x=t^(3)-2t^(2)-4t , where x is expressed in meter and t in second. Determine (a) the average velocity during the interval of 1 second to 4 second. (b) the velocity at t = 1 s and t = 4 s, (c) the average acceleration during the interval of 1 second to 4 second. (d) the acceleration at t = 4 s and t = 1 s.

A particle is moving along x-axis. Its X-coordinate varies with time as, X=2t^2+4t-6 Here, X is in metres and t in seconds. Find average velocity between the time interval t=0 to t=2s.

Position of a particle at any instant is given by x = 3t^(2)+1 , where x is in m and t in sec. Its average velocity in the time interval t = 2 sec to t = 3 sec will be :

A particle moves along a straight line and its velocity depends on time as v = 3t - t^2. Here, v is in m//s and t in second. Find (a) average velocity and (b) average speed for first five seconds.

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in metre and t in second. The retardation of the particle when its velocity becomes zero is.

The motion of a particle along a straight line is described by equation : x = 8 + 12 t - t^3 where x is in meter and t in second. The retardation of the particle when its velocity becomes zero is.

The speed(v) of a particle moving along a straight line is given by v=(t^(2)+3t-4 where v is in m/s and t in seconds. Find time t at which the particle will momentarily come to rest.

The motion of a particle along a straight line is described by the function x=(2t -3)^2, where x is in metres and t is in seconds. Find (a) the position, velocity and acceleration at t=2 s. (b) the velocity of the particle at origin.

The motion of a particle along a straight line is described by the function x=(2t -3)^2, where x is in metres and t is in seconds. Find (a) the position, velocity and acceleration at t=2 s. (b) the velocity of the particle at origin.

The velocity 'v' of a particle moving along straight line is given in terms of time t as v=3(t^(2)-t) where t is in seconds and v is in m//s . The speed is minimum after t=0 second at instant of time