Home
Class 11
PHYSICS
If vecA + vecB = vecR and 2vecA + vecB...

If `vecA + vecB = vecR` and `2vecA + vecB` s perpendicular to `vecB` then

A

`A= R`

B

`B= 2R`

C

`B= R`

D

`B= A`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are vectors such that |veca|=3,|vecb|=4 and |vecc|=5 and (veca+vecb) is perpendicular to vecc,(vecb+vecc) is perpendicular to veca and (vecc+veca) is perpendicular to vecb then |veca+vecb+vecc|= (A) 4sqrt(3) (B) 5sqrt(2) (C) 2 (D) 12

If for two vector vecA and vecB , sum (vecA+vecB) is perpendicular to the difference (vecA-vecB) . The ratio of their magnitude is

If veca , vecb are unit vectors such that the vector veca + 3vecb is peependicular to 7 veca - vecb and veca -4vecb is prependicular to 7 veca -2vecb then the angle between veca and vecb is

In the following questions a statement of assertion (A) is followed by a statement of reason ( R). A : If vecA bot vecB, then |vecA+vecB|=|A-vecB| . R: If vecA bot vecB then (vecA+vecB) is perpendicular to vecA-vecB .

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If non-zero vectors veca and vecb are perpendicular to each other, then the solution of the equation vecr × veca = vecb is given by

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

Given vec(a) is perpendicular to vecb+vecc , vecb is perpendicular to vecc+veca and vecc is perpendicular to veca+vecb . If |veca|=1, |vecb|=2, |vecc|=3 , find |veca+vecb+vecc|