Home
Class 11
MATHS
Find the incentre of the triangle formed...

Find the incentre of the triangle formed by the points A(7,9), B(3,-7) and C(-3,3).

Text Solution

AI Generated Solution

The correct Answer is:
To find the incenter of the triangle formed by the points A(7,9), B(3,-7), and C(-3,3), we will follow these steps: ### Step 1: Calculate the lengths of the sides of the triangle 1. **Calculate side \( a \) (BC):** \[ a = \sqrt{(3 - (-3))^2 + (-7 - 3)^2} = \sqrt{(3 + 3)^2 + (-7 - 3)^2} = \sqrt{6^2 + (-10)^2} = \sqrt{36 + 100} = \sqrt{136} = 2\sqrt{34} \] 2. **Calculate side \( b \) (AC):** \[ b = \sqrt{(7 - (-3))^2 + (9 - 3)^2} = \sqrt{(7 + 3)^2 + (9 - 3)^2} = \sqrt{10^2 + 6^2} = \sqrt{100 + 36} = \sqrt{136} = 2\sqrt{34} \] 3. **Calculate side \( c \) (AB):** \[ c = \sqrt{(7 - 3)^2 + (9 - (-7))^2} = \sqrt{(4)^2 + (9 + 7)^2} = \sqrt{16 + 256} = \sqrt{272} = 4\sqrt{17} \] ### Step 2: Use the incenter formula The coordinates of the incenter \( I(x, y) \) can be calculated using the formula: \[ I_x = \frac{a \cdot x_A + b \cdot x_B + c \cdot x_C}{a + b + c} \] \[ I_y = \frac{a \cdot y_A + b \cdot y_B + c \cdot y_C}{a + b + c} \] ### Step 3: Substitute the values into the formula 1. **Calculate \( I_x \):** \[ I_x = \frac{(2\sqrt{34}) \cdot 7 + (2\sqrt{34}) \cdot 3 + (4\sqrt{17}) \cdot (-3)}{2\sqrt{34} + 2\sqrt{34} + 4\sqrt{17}} \] \[ = \frac{14\sqrt{34} + 6\sqrt{34} - 12\sqrt{17}}{4\sqrt{34} + 4\sqrt{17}} = \frac{20\sqrt{34} - 12\sqrt{17}}{4(\sqrt{34} + \sqrt{17})} \] \[ = \frac{5\sqrt{34} - 3\sqrt{17}}{\sqrt{34} + \sqrt{17}} \] 2. **Calculate \( I_y \):** \[ I_y = \frac{(2\sqrt{34}) \cdot 9 + (2\sqrt{34}) \cdot (-7) + (4\sqrt{17}) \cdot 3}{2\sqrt{34} + 2\sqrt{34} + 4\sqrt{17}} \] \[ = \frac{18\sqrt{34} - 14\sqrt{34} + 12\sqrt{17}}{4\sqrt{34} + 4\sqrt{17}} = \frac{4\sqrt{34} + 12\sqrt{17}}{4(\sqrt{34} + \sqrt{17})} \] \[ = \frac{\sqrt{34} + 3\sqrt{17}}{\sqrt{34} + \sqrt{17}} \] ### Final Incenter Coordinates Thus, the incenter \( I \) of the triangle is: \[ I\left(\frac{5\sqrt{34} - 3\sqrt{17}}{\sqrt{34} + \sqrt{17}}, \frac{\sqrt{34} + 3\sqrt{17}}{\sqrt{34} + \sqrt{17}}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x, y) is the incentre of the triangle formed by the points (3, 4), (4, 3) and (1, 2), then the value of x^(2) is

Find the centroid of the triangle formed by the points (2,7) (3,-1)(-5,6).

Find the area of the triangle formed by the points (9,-7),(2,4) and (0,0)

Find the area of a triangle formed by the points A(5,\ 2),\ B(4,\ 7)\ a n d\ C(7, 4)dot

If the centroid of the triangle formed by the points (a ,\ b),\ (b ,\ c) and (c ,\ a) is at the origin, then a^3+b^3+c^3= a b c (b) 0 (c) a+b+c (d) 3\ a b c

Find the incentre of the triangle, whose vertices are A(3,2) B(7,2) and C(7,5).

If the centroid of the triangle formed by the points (3,\ -5),\ (-7,\ 4),\ (10 ,\ -k) is at the point (k ,\ -1) , then k= 3 (b) 1 (c) 2 (d) 4

A point moves such that the area of the triangle formed by it with the points (1, 5) and (3,-7) is 21 s qdotu n i t sdot Then, find the locus of the point.

Find the area of the triangle formed by (5,2),(-9,-3),(-3,-5) .

Find the nine point centre of the triangle formed by (5,-1), (-2,3)(-4,-7) whose orthocentre is the origin.