Home
Class 11
MATHS
Find the transformed equation of x^(2)...

Find the transformed equation of
`x^(2)+2sqrt3 xy-y^(2) = 2a^(2)` when the axes are rotated through an angle `30^(0).`

Text Solution

AI Generated Solution

The correct Answer is:
To find the transformed equation of the given equation \( x^2 + 2\sqrt{3}xy - y^2 = 2a^2 \) when the axes are rotated through an angle of \( 30^\circ \), we will follow these steps: ### Step 1: Define the transformation We start by defining the transformation equations for the rotation of axes: \[ x = X \cos \theta - Y \sin \theta \] \[ y = X \sin \theta + Y \cos \theta \] where \( \theta = 30^\circ \). ### Step 2: Substitute the values of \( \cos 30^\circ \) and \( \sin 30^\circ \) Using the trigonometric values: \[ \cos 30^\circ = \frac{\sqrt{3}}{2}, \quad \sin 30^\circ = \frac{1}{2} \] we can substitute these into the transformation equations: \[ x = X \cdot \frac{\sqrt{3}}{2} - Y \cdot \frac{1}{2} \] \[ y = X \cdot \frac{1}{2} + Y \cdot \frac{\sqrt{3}}{2} \] ### Step 3: Substitute \( x \) and \( y \) into the original equation Now, we substitute \( x \) and \( y \) into the original equation: \[ \left( X \cdot \frac{\sqrt{3}}{2} - Y \cdot \frac{1}{2} \right)^2 + 2\sqrt{3} \left( X \cdot \frac{\sqrt{3}}{2} - Y \cdot \frac{1}{2} \right)\left( X \cdot \frac{1}{2} + Y \cdot \frac{\sqrt{3}}{2} \right) - \left( X \cdot \frac{1}{2} + Y \cdot \frac{\sqrt{3}}{2} \right)^2 = 2a^2 \] ### Step 4: Expand the equation Now we will expand each term: 1. **First term**: \[ \left( X \cdot \frac{\sqrt{3}}{2} - Y \cdot \frac{1}{2} \right)^2 = \frac{3}{4}X^2 - \frac{\sqrt{3}}{2}XY + \frac{1}{4}Y^2 \] 2. **Second term**: \[ 2\sqrt{3} \left( X \cdot \frac{\sqrt{3}}{2} - Y \cdot \frac{1}{2} \right)\left( X \cdot \frac{1}{2} + Y \cdot \frac{\sqrt{3}}{2} \right) = 2\sqrt{3} \left( \frac{3}{4}XY - \frac{1}{4}Y^2 - \frac{1}{4}X^2 + \frac{\sqrt{3}}{4}XY \right) \] This simplifies to: \[ \frac{3\sqrt{3}}{2}XY - \frac{\sqrt{3}}{2}Y^2 - \frac{\sqrt{3}}{2}X^2 \] 3. **Third term**: \[ \left( X \cdot \frac{1}{2} + Y \cdot \frac{\sqrt{3}}{2} \right)^2 = \frac{1}{4}X^2 + \frac{\sqrt{3}}{2}XY + \frac{3}{4}Y^2 \] ### Step 5: Combine all terms Combining all the expanded terms: \[ \frac{3}{4}X^2 - \frac{\sqrt{3}}{2}XY + \frac{1}{4}Y^2 + \frac{3\sqrt{3}}{2}XY - \frac{\sqrt{3}}{2}Y^2 - \left( \frac{1}{4}X^2 + \frac{\sqrt{3}}{2}XY + \frac{3}{4}Y^2 \right) = 2a^2 \] This results in: \[ \left( \frac{3}{4} - \frac{1}{4} \right)X^2 + \left( \frac{1}{4} - \frac{3}{4} \right)Y^2 + \left( -\frac{\sqrt{3}}{2} + \frac{3\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \right)XY = 2a^2 \] This simplifies to: \[ X^2 - Y^2 = 2a^2 \] ### Final Step: Write the transformed equation Thus, the transformed equation after the rotation is: \[ X^2 - Y^2 = a^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the transformed equation of 3x^(2)+10xy +3y^(2) = 9 when the axes are rotated through an angle pi/4

If the transferred equation of a curve is x^(2) + 2sqrt(3)xy - y^(2) = 2a^(2) when the axes are rotated through an angle 60^(@) , then the original equation of the curve is

The transformed equation of x^(2)+6xy+8y^(2)=10 when the axes are rotated through an angled pi//4 is

If the transformed equation of a curve is 17x^(2) - 16xy + 17y^(2)=225 when the axes are rotated through an angle 45^(@) , then the original equation of the curve is

If the transformed equation of a curve is 17x^(2) - 16xy + 17y^(2)=225 when the axes are rotated through an angle 45^(@) , then the original equation of the curve is

The transformed equation of 3x^(2)+3y^(2)+2xy-2=0 when the coordinats axes are rotated through an angle of 45^(@) , is

The transformed equation of x cos alpha + y sin alpha = p when the axes are rotated through an angle alpha is

The equation 4xy-3x^(2)=a^(2) become when the axes are turned through an angle tan^(-1)2 is

The transformed equation of 5x^(2) + 4xy + 8y^(2) - 12x - 12y =0 when the axes are translated to the point (1,1//2) is

If the coordiantes of a point P are transformed to (2,-4sqrt(3)) when the axes are rotated through an angle 60^(@) , then P=