Home
Class 11
MATHS
Find the inverse of the function f(x) = ...

Find the inverse of the function `f(x) = (ax+b)/(cx-a)`, which is a bijection.

Text Solution

Verified by Experts

The correct Answer is:
`f^(-1)(x)=f(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the function: f(x)={x^3-1, ,x<2x^2+3,xgeq2

Find the inverse of f(x)={x , 4

y = f(x) = (ax-b)/(cx-a) then f(y) = ?

Find the inverse of the function: f(x)={(x^3-1, ,x<2), (x^2+3,xgeq2)}

Find the inverse of the function f : R rarr R defined by f(x) = 4x - 7 .

Find the inverse of f(x)={(x ,, x 4):}

Find the inverse of f(x)={(x ,, x 4):}

The least value of the function f(x) = ax + (b)/(x) (x gt 0, a gt 0, b gt 0)

Statement-1: If ad-bc ne 0 , then f(x)=(ax+b)/(cx+d) cannot attain the value {(a)/(c )} . Statement-2: The domain of the function g(x)=(b-dx)/(cx-a) is R-{(a)/( c)}

Find the inverse of the function: f:Z to Z defined by f(x)=[x+1], where [.] denotes the greatest integer function.