Home
Class 11
MATHS
If f= {(1, 2), (2, -3), (3, -1)} then fi...

If f= {(1, 2), (2, -3), (3, -1)} then find:
(i) 2f, (ii) `2+f`, (iii) `f^(2)`, (iv) `sqrt(f)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the function \( f = \{(1, 2), (2, -3), (3, -1)\} \) and find the required operations one by one. ### Step 1: Finding \( 2f \) To find \( 2f \), we multiply the second coordinate of each ordered pair by 2. - For the first pair \( (1, 2) \): \[ 2 \times 2 = 4 \quad \Rightarrow \quad (1, 4) \] - For the second pair \( (2, -3) \): \[ 2 \times (-3) = -6 \quad \Rightarrow \quad (2, -6) \] - For the third pair \( (3, -1) \): \[ 2 \times (-1) = -2 \quad \Rightarrow \quad (3, -2) \] Thus, \[ 2f = \{(1, 4), (2, -6), (3, -2)\} \] ### Step 2: Finding \( 2 + f \) To find \( 2 + f \), we add 2 to the second coordinate of each ordered pair. - For the first pair \( (1, 2) \): \[ 2 + 2 = 4 \quad \Rightarrow \quad (1, 4) \] - For the second pair \( (2, -3) \): \[ 2 + (-3) = -1 \quad \Rightarrow \quad (2, -1) \] - For the third pair \( (3, -1) \): \[ 2 + (-1) = 1 \quad \Rightarrow \quad (3, 1) \] Thus, \[ 2 + f = \{(1, 4), (2, -1), (3, 1)\} \] ### Step 3: Finding \( f^2 \) To find \( f^2 \), we square the second coordinate of each ordered pair. - For the first pair \( (1, 2) \): \[ 2^2 = 4 \quad \Rightarrow \quad (1, 4) \] - For the second pair \( (2, -3) \): \[ (-3)^2 = 9 \quad \Rightarrow \quad (2, 9) \] - For the third pair \( (3, -1) \): \[ (-1)^2 = 1 \quad \Rightarrow \quad (3, 1) \] Thus, \[ f^2 = \{(1, 4), (2, 9), (3, 1)\} \] ### Step 4: Finding \( \sqrt{f} \) To find \( \sqrt{f} \), we take the square root of the second coordinate of each ordered pair. Note that square roots of negative numbers will yield complex numbers. - For the first pair \( (1, 2) \): \[ \sqrt{2} \quad \Rightarrow \quad (1, \sqrt{2}) \] - For the second pair \( (2, -3) \): \[ \sqrt{-3} = i\sqrt{3} \quad \Rightarrow \quad (2, i\sqrt{3}) \] - For the third pair \( (3, -1) \): \[ \sqrt{-1} = i \quad \Rightarrow \quad (3, i) \] Thus, \[ \sqrt{f} = \{(1, \sqrt{2}), (2, i\sqrt{3}), (3, i)\} \] ### Final Answers 1. \( 2f = \{(1, 4), (2, -6), (3, -2)\} \) 2. \( 2 + f = \{(1, 4), (2, -1), (3, 1)\} \) 3. \( f^2 = \{(1, 4), (2, 9), (3, 1)\} \) 4. \( \sqrt{f} = \{(1, \sqrt{2}), (2, i\sqrt{3}), (3, i)\} \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = x^(2) and g(x) = Ixl then find the values of: (i) f+g, (ii) f-g, (iii) fg, (iv) 2f, (v) f^(2) , (vi) f+3

If f(x)= {(x^2,"when" ,xlt0),( x ," when", 0lexlt1),( 1/x ," when", x gt1):} F i n d : (i) . f(1//2) (ii) . f(-2) (iii) . f(1) (iv) . f(sqrt(3)) (v) . f(-sqrt(3))

If f and g are two real valued functions defined as f(x) =2x +1 and g (x) =x^(2) +1 then find (i) f+g (ii) f-g (iii) fg (iv) (f)/(g)

If f : R to R is defined as: f(x)={{:(2x+5","x gt 9),(x^(2)-1","-9 lt x lt 9),(x-4"," x lt -9):} then evaluate (i) f(2), (ii) f(10),(iii) f(-12) and (iv) f[f(3)] .

If f(x)=2x^(3)-13x^(2)+17x+12 Then find (i)" "f(2)(ii) " "f(-3)(iii)" "f(0)

If f(x)=2x-5 , then evaluate the following: (i) f(0) (ii) f(7) (iii) f(-3)

If f:R to R is defined as: f(x)= {{:(2x+1, "if",x gt 2),(x^(2)-1,"if",-2 lt x lt 2),(2x,"if",x lt -2):} then evaluate the following: (i) f(1) (ii) f(5) (iii) f(-3)

(d)/(dx) (AC)= f(x) (MC-AC) , then f(x)= (i) (1)/(x) (ii) x (iii) x^(-2) (iv) -x^(-1)

Let S = {1, 2, 3} . Determine whether the functions f : S->S defined as below have inverses. Find f^(-1) , if it exists.(a) f = {(1, 1), (2, 2), (3, 3)} (b) f = {(1, 2), (2, 1), (3, 1)} (c) f =

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)