Home
Class 11
MATHS
If f(x) = x^(2) and g(x) = Ixl then fin...

If `f(x) = x^(2)` and g(x) = Ixl then find the values of:
(i) f+g, (ii) f-g, (iii) fg, (iv) 2f, (v) `f^(2)`, (vi) f+3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find various combinations of the functions \( f(x) = x^2 \) and \( g(x) = |x| \). Let's go through each part step by step. ### Step-by-Step Solution: 1. **Finding \( f + g \)**: \[ f + g = f(x) + g(x) = x^2 + |x| \] Thus, \[ f + g = x^2 + |x| \] 2. **Finding \( f - g \)**: \[ f - g = f(x) - g(x) = x^2 - |x| \] Therefore, \[ f - g = x^2 - |x| \] 3. **Finding \( fg \)**: \[ fg = f(x) \cdot g(x) = x^2 \cdot |x| \] This simplifies to: \[ fg = x^2 |x| = x^3 \text{ (for } x \geq 0\text{) or } -x^3 \text{ (for } x < 0\text{)} \] 4. **Finding \( 2f \)**: \[ 2f = 2 \cdot f(x) = 2 \cdot x^2 \] Thus, \[ 2f = 2x^2 \] 5. **Finding \( f^2 \)**: \[ f^2 = (f(x))^2 = (x^2)^2 = x^4 \] Therefore, \[ f^2 = x^4 \] 6. **Finding \( f + 3 \)**: \[ f + 3 = f(x) + 3 = x^2 + 3 \] Thus, \[ f + 3 = x^2 + 3 \] ### Summary of Results: - (i) \( f + g = x^2 + |x| \) - (ii) \( f - g = x^2 - |x| \) - (iii) \( fg = x^2 |x| \) - (iv) \( 2f = 2x^2 \) - (v) \( f^2 = x^4 \) - (vi) \( f + 3 = x^2 + 3 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=x and g(x)=|x| , then define the following functions: (i) f+g " "(ii) f-g (iii) f*g" "(iv) (f)/(g)

If f(x)=x^(2) and g(x)=2x , then evaluate, (i) (f+g)(3)" "(ii) (f-g)(2) (iii) (f*g)(1)" "(iv) ((f)/(g))(5)

If f(x)=2x^(3) and g(x)=3x , what is the value of g(f(-2))-f(g(-2)) ?

If f(x)=2x^(2)-4 and g(x)=2^(x) , the value of g(f(1)) is

If f(x+2)=3x+11 and g(f(x))=2x, find the value of g(5).

If f(x) = (3)/(x-2) and g(x) = sqrt(x + 1) , find the domain of f @ g .

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If f(x)=|x-2| and g(x)=f(f(x)) then g'(x)=

Let fa n dg be two real functions defined by f(x)=1/(x+4)a n dg(x)=(x-4)^3dot Find the following: f+g (ii) f-g (iii) fg (iv) f/g (v) 2f (vi) 1/f (vii) 1/g

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is