Home
Class 11
MATHS
Find the number of binary operations tha...

Find the number of binary operations that can be defined on the set A={a,b,c}

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of binary operations that can be defined on the set \( A = \{a, b, c\} \), we can follow these steps: ### Step 1: Understand the Definition of a Binary Operation A binary operation on a set \( A \) is a function that combines two elements from the set to produce another element from the same set. We denote this operation as \( * \). ### Step 2: Determine the Domain and Codomain The binary operation \( * \) can be defined as a function from \( A \times A \) (the Cartesian product of \( A \) with itself) to \( A \). This means we need to consider pairs of elements from \( A \). ### Step 3: Calculate the Size of \( A \) The set \( A \) has 3 elements: \( a, b, c \). Therefore, the cardinality of \( A \) is \( |A| = 3 \). ### Step 4: Calculate the Size of \( A \times A \) The Cartesian product \( A \times A \) consists of all possible ordered pairs of elements from \( A \). The number of elements in \( A \times A \) is given by: \[ |A \times A| = |A| \times |A| = 3 \times 3 = 9 \] ### Step 5: Determine the Number of Functions from \( A \times A \) to \( A \) For each of the 9 pairs in \( A \times A \), we can choose any of the 3 elements in \( A \) as the output of the function. Therefore, the total number of functions (binary operations) from \( A \times A \) to \( A \) is given by: \[ \text{Number of binary operations} = |A|^{|A \times A|} = 3^{9} \] ### Step 6: Calculate \( 3^9 \) Now, we compute \( 3^9 \): \[ 3^9 = 19683 \] ### Final Answer Thus, the total number of binary operations that can be defined on the set \( A = \{a, b, c\} \) is \( 19683 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of relations that can be defined on the set A = {a, b, c} is

If A = {1, b}, then the number of binary operations that can be defined on A is

The number of binary operations that can be defined on a set of 2 elements is (a) 8 (b) 4 (c) 16 (d) 64

The number of commutative binary operations that can be defined on a set of 2 elements is

Find the total number of binary operations on {a ,\ b} .

Define a binary operation on a set.

Write the identity element for the binary operation * defined on the set R of all real numbers by the rule a*b= (3a b)/7 for all a ,\ b in Rdot

Consider the binary operation * and o defined by the following tables on set S={a ,\ b ,\ c ,\ d} . (FIGURE) Show that both the binary operations are commutative and associative. Write down the identities and list the inverse of elements.

Find the identity element for the binary operation * on Z defined as a*b = a + b-5. Also find the inverse element of 100.

Define identity element for a binary operation defined on a set.

Recommended Questions
  1. Find the number of binary operations that can be defined on the set A=...

    Text Solution

    |

  2. समुच्चय Q पर परिभाषित एक द्विआधारी संक्रिया है। ज्ञात करें कि द्विआधार...

    Text Solution

    |

  3. समुच्चय Q पर परिभाषित एक द्विआधारी संक्रिया है। ज्ञात करें कि द्विआधार...

    Text Solution

    |

  4. समुच्चय Q पर परिभाषित एक द्विआधारी संक्रिया निम्नलिखित है। ज्ञात करें...

    Text Solution

    |

  5. माना कि ** परिमेय संख्याओं के समुच्चय Q पर निम्न प्रकार परिभाषित एक द...

    Text Solution

    |

  6. माना कि ** परिमेय संख्याओं के समुच्चय Q पर निम्न प्रकार परिभाषित एक द...

    Text Solution

    |

  7. माना कि ** परिमेय संख्याओं के समुच्चय Q पर निम्न प्रकार परिभाषित एक द...

    Text Solution

    |

  8. माना कि ** परिमेय संख्याओं के समुच्चय Q पर निम्न प्रकार परिभाषित एक द...

    Text Solution

    |

  9. माना कि ** परिमेय संख्याओं के समुच्चय Q पर निम्न प्रकार परिभाषित एक द...

    Text Solution

    |