Home
Class 11
MATHS
Find the angle between the vectors bari+...

Find the angle between the vectors `bari+2barj+3bark" and "3bari-barj+2bark`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \) and \( \mathbf{b} = 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} \), we can use the formula for the dot product of two vectors: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta \] where \( \theta \) is the angle between the two vectors. ### Step 1: Calculate the dot product \( \mathbf{a} \cdot \mathbf{b} \) The dot product is calculated as follows: \[ \mathbf{a} \cdot \mathbf{b} = (1)(3) + (2)(-1) + (3)(2) \] Calculating each term: \[ = 3 - 2 + 6 = 7 \] ### Step 2: Calculate the magnitudes of \( \mathbf{a} \) and \( \mathbf{b} \) **Magnitude of \( \mathbf{a} \)**: \[ |\mathbf{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14} \] **Magnitude of \( \mathbf{b} \)**: \[ |\mathbf{b}| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{9 + 1 + 4} = \sqrt{14} \] ### Step 3: Substitute into the dot product formula Now we substitute the values into the dot product formula: \[ 7 = |\mathbf{a}| |\mathbf{b}| \cos \theta \] Substituting the magnitudes: \[ 7 = \sqrt{14} \cdot \sqrt{14} \cdot \cos \theta \] This simplifies to: \[ 7 = 14 \cos \theta \] ### Step 4: Solve for \( \cos \theta \) Dividing both sides by 14: \[ \cos \theta = \frac{7}{14} = \frac{1}{2} \] ### Step 5: Find \( \theta \) Now we find the angle \( \theta \): \[ \theta = \cos^{-1}\left(\frac{1}{2}\right) \] The angle whose cosine is \( \frac{1}{2} \) is: \[ \theta = \frac{\pi}{3} \text{ radians} \quad \text{or} \quad 60^\circ \] ### Final Answer The angle between the vectors \( \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \) and \( 3\mathbf{i} - \mathbf{j} + 2\mathbf{k} \) is \( \frac{\pi}{3} \) radians or \( 60^\circ \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.

Find the angle between the vectors hat i-2 hat j+3k and 3 hat i-2 hat j+k

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find the angle between the vectors 3hati+4hatj and 2hatj-5hatk .

Find the angle between the vectors 2hati-hatj+hatkand3hati+4hatj-hatk .

Determine the angle between the vectors hati+2hatj+hatk and 3hati+hatj-hatk . Also find the unit vector perpendicular to each of the two vectors.

If theta is the angle between the vectors a=2hati+2hatj-hatk and b=6hati-3hatj+2hatk , then

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the vector of magnitude 3, bisecting the angle between the vectors veca=2hati+hatj-hatk and vecb=hati-2hatj+hatk .

If theta is the angle between two vectors hati-2hatj+3hatk and 3hati-2hatj+hatk , find sin theta