Home
Class 11
MATHS
If the vectors lambda bar(i)-3bar(j)+5ba...

If the vectors `lambda bar(i)-3bar(j)+5bar(k), and 2lambdabar(i)-lambda(j)-bar(k)`, are perpendicular to each other find `lambda`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the vectors \( \lambda \mathbf{i} - 3 \mathbf{j} + 5 \mathbf{k} \) and \( 2\lambda \mathbf{i} - \lambda \mathbf{j} - \mathbf{k} \) are perpendicular, we can follow these steps: ### Step 1: Understand the condition for perpendicular vectors Two vectors are perpendicular if their dot product is zero. ### Step 2: Write down the vectors Let: \[ \mathbf{A} = \lambda \mathbf{i} - 3 \mathbf{j} + 5 \mathbf{k} \] \[ \mathbf{B} = 2\lambda \mathbf{i} - \lambda \mathbf{j} - \mathbf{k} \] ### Step 3: Set up the dot product The dot product \( \mathbf{A} \cdot \mathbf{B} \) is given by: \[ \mathbf{A} \cdot \mathbf{B} = (\lambda)(2\lambda) + (-3)(-\lambda) + (5)(-1) \] ### Step 4: Calculate the dot product Calculating each term: - The \( \mathbf{i} \) components: \( \lambda \cdot 2\lambda = 2\lambda^2 \) - The \( \mathbf{j} \) components: \( -3 \cdot -\lambda = 3\lambda \) - The \( \mathbf{k} \) components: \( 5 \cdot -1 = -5 \) Putting it all together: \[ \mathbf{A} \cdot \mathbf{B} = 2\lambda^2 + 3\lambda - 5 \] ### Step 5: Set the dot product to zero Since the vectors are perpendicular: \[ 2\lambda^2 + 3\lambda - 5 = 0 \] ### Step 6: Solve the quadratic equation To solve the quadratic equation \( 2\lambda^2 + 3\lambda - 5 = 0 \), we can use the factorization method or the quadratic formula. Here, we will factor it. Rearranging gives: \[ 2\lambda^2 + 5\lambda - 2\lambda - 5 = 0 \] Grouping terms: \[ (2\lambda^2 + 5\lambda) + (-2\lambda - 5) = 0 \] Factoring by grouping: \[ \lambda(2\lambda + 5) - 1(2\lambda + 5) = 0 \] Factoring out \( (2\lambda + 5) \): \[ (2\lambda + 5)(\lambda - 1) = 0 \] ### Step 7: Find the values of \( \lambda \) Setting each factor to zero gives: 1. \( 2\lambda + 5 = 0 \) → \( \lambda = -\frac{5}{2} \) 2. \( \lambda - 1 = 0 \) → \( \lambda = 1 \) Thus, the values of \( \lambda \) are: \[ \lambda = -\frac{5}{2} \quad \text{or} \quad \lambda = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

In Q-2, if vectors are perpendicular to each other then find the value of lambda .

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

If two vectors 2hat(i)+3hat(j)-hat(k) and -4hat(i)-6hat(j)-lambda hat(k) are parallel to each other,then find the value of lambda

The value of lambda for which the two vectors vec(a) = 5hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + hat(k) are perpendicular to each other is :

Find the value of lambdadot If the vectors 2 hat i+lambda hat j+3 hat k\ a n d\ 3 hat i+2 hat j-4 hat k are perpendicular to each other.

If the planes overset(to)( r) (2 hat(i) - lambda (j) + 3 hat(k) ) = 0 and overset(to)( r) ( lambda (i) + 5 hat(j) - hat(k) )=5 are perpendicular to each other, then the value of lambda is

Write the value of lambda so that the vector vec a=2 hat i+lambda hat j+ hat k\ a n d\ vec b= hat i-2 hat j+3 hat k are perpendicular to each other.

Find the value of lambda so that the vectors vec a=2 hat i+lambda hat j+ hat ka n d vec b= hat i-2 hat j+3 hat k are perpendicular to each other.

if vectors 3 hat i - 2 hat j + m hat k and - 2 hat i+ hat j+ 4 hat k are perpendicular to each other , find the value of m

If the vectors 3 hat i+lambda hat j+ hat k\ a n d\ 2 hat i- hat j+8 hat k are perpendicular, then lambda is equal to -14 b. 7 c. 14 d. 1/7