Home
Class 11
MATHS
If 1+ tan^(2) theta = sec^(2) theta then...

If `1+ tan^(2) theta = sec^(2) theta` then find `(sec theta + tan theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(1 + \tan^2 \theta = \sec^2 \theta\) and find the value of \((\sec \theta + \tan \theta)\), we can follow these steps: ### Step 1: Understand the Given Identity We start with the identity: \[ 1 + \tan^2 \theta = \sec^2 \theta \] This is a well-known trigonometric identity. ### Step 2: Rearranging the Identity From the identity, we can rearrange it to express \(\sec^2 \theta\) in terms of \(\tan^2 \theta\): \[ \sec^2 \theta - \tan^2 \theta = 1 \] ### Step 3: Use the Difference of Squares We can recognize that the left side of the equation can be factored using the difference of squares: \[ (\sec \theta - \tan \theta)(\sec \theta + \tan \theta) = 1 \] ### Step 4: Solve for \((\sec \theta + \tan \theta)\) Let \(x = \sec \theta + \tan \theta\) and \(y = \sec \theta - \tan \theta\). From the previous step, we have: \[ xy = 1 \] This implies: \[ x = \frac{1}{y} \] ### Step 5: Find the Value of \((\sec \theta + \tan \theta)\) To find \(x\), we can express \(y\) in terms of \(x\): \[ \sec \theta - \tan \theta = \frac{1}{\sec \theta + \tan \theta} \] Thus, substituting \(x\) into the equation gives us: \[ y = \frac{1}{x} \] Now substituting back into the product: \[ x \cdot \frac{1}{x} = 1 \] This confirms our identity holds true. ### Conclusion Thus, we can conclude that: \[ \sec \theta + \tan \theta = x \] And since \(xy = 1\), we can say that \((\sec \theta + \tan \theta)\) is the reciprocal of \((\sec \theta - \tan \theta)\). ### Final Result The value of \((\sec \theta + \tan \theta)\) can be expressed in terms of \(y\) but cannot be simplified further without specific values of \(\theta\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^2 theta = 1-e^2 then the value of sec theta + tan^3 theta cosec theta

(5) sec theta+tan theta=7 then sec theta-tan theta=?

(5) sec theta+tan theta=7 then sec theta-tan theta=?

(5) sec theta+tan theta=7 then sec theta-tan theta=?

(5) sec theta+tan theta=7 then sec theta-tan theta=?

x =a tan theta ,y =b sec theta find dy/dx

If theta is an acute angle and tan theta + sec theta = 1.5 , find sin theta, tan theta and sec theta .

If a chord joining P(a sec theta, a tan theta), Q(a sec alpha, a tan alpha) on the hyperbola x^(2)-y^(2) =a^(2) is the normal at P, then tan alpha is (a) tan theta (4 sec^(2) theta+1) (b) tan theta (4 sec^(2) theta -1) (c) tan theta (2 sec^(2) theta -1) (d) tan theta (1-2 sec^(2) theta)

If pi/2 < theta < (3pi)/2 then sqrt ((1-sin theta)/(1+sin theta))= a. sec theta-tan theta, b. sec theta + tan theta, c. tan theta-sec theta, d. none of these

Prove that: sqrt((1-sintheta)/(1+sintheta))= sec theta- tan theta when (-pi/2) < theta < pi/2 and -sec theta+tan theta when pi/2< theta< (3pi)/2