Home
Class 11
MATHS
Prove that 1+cot^(2) theta = cosec^(2) t...

Prove that `1+cot^(2) theta = cosec^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( 1 + \cot^2 \theta = \csc^2 \theta \), we will use the definitions of trigonometric ratios and the Pythagorean theorem. ### Step-by-Step Solution: 1. **Understanding the Definitions**: - In a right triangle, let \( \theta \) be one of the angles. - The sides of the triangle are defined as follows: - Opposite side to \( \theta \): \( P \) (Perpendicular) - Adjacent side to \( \theta \): \( B \) (Base) - Hypotenuse: \( H \) 2. **Write the Definitions of Cotangent and Cosecant**: - The cotangent of \( \theta \) is defined as: \[ \cot \theta = \frac{B}{P} \] - The cosecant of \( \theta \) is defined as: \[ \csc \theta = \frac{H}{P} \] 3. **Applying the Pythagorean Theorem**: - According to the Pythagorean theorem, we have: \[ H^2 = P^2 + B^2 \] 4. **Dividing the Entire Equation by \( P^2 \)**: - We divide the equation \( H^2 = P^2 + B^2 \) by \( P^2 \): \[ \frac{H^2}{P^2} = \frac{P^2}{P^2} + \frac{B^2}{P^2} \] - This simplifies to: \[ \frac{H^2}{P^2} = 1 + \frac{B^2}{P^2} \] 5. **Substituting the Trigonometric Ratios**: - We know that: \[ \frac{H}{P} = \csc \theta \quad \text{and} \quad \frac{B}{P} = \cot \theta \] - Therefore, we can rewrite the equation as: \[ \left(\csc \theta\right)^2 = 1 + \left(\cot \theta\right)^2 \] 6. **Final Result**: - Rearranging gives us: \[ 1 + \cot^2 \theta = \csc^2 \theta \] - This completes the proof.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the general value of theta 2 cot ^(2) theta = cosec ^(2) theta

Prove that sqrt(sec^(2)theta + cosec^(2)theta) = tantheta + cottheta .

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Evaluate : |{:(1, cosec ^(2) theta, cot ^(2) theta),(-1 , cot ^(2) theta, cosec ^(2) theta),(2,(9)/(2), (5)/(2) ):}| a) -1 b) 1 c) 0 d) None of these

Prove that : cosec theta + cosec 2 theta + cosec 2^2 theta +...........+cosec2^(n-1) theta= cot(theta/2)-cot 2^(n-1)theta

Prove that sqrt("sec"^(2)theta+"cosec"^(2)theta)="tan"theta+"cot"theta

Prove that cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta

Prove that cos^2 theta cosec theta+sin theta=cosec theta

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2