Home
Class 11
MATHS
Find the value of (i) sin. (5pi)/(3)...

Find the value of
(i) `sin. (5pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{5\pi}{3}\right) \), we can follow these steps: ### Step 1: Rewrite the angle We can express \( \frac{5\pi}{3} \) in a more manageable form. Notice that: \[ \frac{5\pi}{3} = 2\pi - \frac{\pi}{3} \] ### Step 2: Use the sine subtraction identity Using the identity \( \sin(2\pi - \theta) = -\sin(\theta) \), we can rewrite our expression: \[ \sin\left(\frac{5\pi}{3}\right) = \sin\left(2\pi - \frac{\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) \] ### Step 3: Find the value of \( \sin\left(\frac{\pi}{3}\right) \) From trigonometric values, we know: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \] ### Step 4: Substitute back into the equation Now substituting this value back into our expression, we have: \[ \sin\left(\frac{5\pi}{3}\right) = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2} \] ### Final Answer Thus, the value of \( \sin\left(\frac{5\pi}{3}\right) \) is: \[ \boxed{-\frac{\sqrt{3}}{2}} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1)(sin.(5pi)/3) .

Find the value of sin (31pi)/3 .

Find the value of sin (31pi)/3 .

Find the value of sin^(-1)(sin((2pi)/3))

Find the value of sin^(-1)(sin(3pi)/5) .

Find the value of: 3sin(pi/6) sec(pi/3) 4sin((5pi)/6) cot(pi/4)

Find the degree measure of (i) (5pi)/(3) (ii) -4.

If sinA=3/5 and cosB=9/41, 0 < A < pi/2 and 0 < B < pi/2 then find the values of (i) sin(A+B) (ii) sin(A-B) (iii) cos(A+B) (iv) cos(A-B)

Find the value of the following sin[pi/3 - sin^(-1) . (1/2)]

Find the value of sin^(-1) ( cos. ( 33pi)/5) .