Home
Class 11
MATHS
Find the value of (ii) tan(855^(@))...

Find the value of
(ii) `tan(855^(@))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan(855^\circ) \), we can follow these steps: ### Step 1: Simplify the angle We can start by reducing the angle \( 855^\circ \) to an equivalent angle within the range of \( 0^\circ \) to \( 360^\circ \). We do this by subtracting \( 360^\circ \) multiple times until we get an angle in the desired range. \[ 855^\circ - 2 \times 360^\circ = 855^\circ - 720^\circ = 135^\circ \] ### Step 2: Use the tangent function Now that we have \( \tan(855^\circ) = \tan(135^\circ) \), we can find the value of \( \tan(135^\circ) \). ### Step 3: Identify the reference angle The angle \( 135^\circ \) is in the second quadrant. The reference angle for \( 135^\circ \) is: \[ 180^\circ - 135^\circ = 45^\circ \] ### Step 4: Apply the tangent function in the second quadrant In the second quadrant, the tangent function is negative. Therefore, we have: \[ \tan(135^\circ) = -\tan(45^\circ) \] ### Step 5: Use the known value of tangent We know that: \[ \tan(45^\circ) = 1 \] Thus, we can substitute this value into our equation: \[ \tan(135^\circ) = -1 \] ### Conclusion Therefore, the value of \( \tan(855^\circ) \) is: \[ \tan(855^\circ) = -1 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of : (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Find the values of: (i) tan (-30^(@)) (ii) sin 120^(@) (iii) sin 135^(@) (iv) cos 150^(@) (v) sin 270^(@) (vi) cos 270^(@)

Find the value of tan pi/8 .

Find the value of : tan30^(@)tan60^(@)

Find the value of : tan30^(@)tan60^(@)

Find the value of tan15^(0)

Find the value of : (i) sin75^o (ii) tan15^o

Find the value of: tan(-30^(@))

Find the value of : tan 75^0

Find the value of : tan 15^0