Home
Class 11
MATHS
If x=Sin 1, y = Sin 2, z= Sin 3 then...

If `x=Sin 1, y = Sin 2, z= Sin 3` then

A

`x lt y lt z`

B

`x gt y gt z`

C

`y lt z lt x`

D

`z lt x lt y`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Solve the system: x sin a + y sin 2a + z sin 3a = sin 4a x sin b + y sin 2b + z sin 3b = sin 4b x sin c + y sin 2c + z sin 3c = sin 4c

If sin^2x + sin^2y < 1 ; x, y in R then prove that sin^-1(tanx . tany) in (-pi/2, pi/2) .

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

STATEMENT-1: sin 2 > sin 3 STATEMENT-2: If x,y in (pi/2, pi), x lt y, then sin x gt siny

If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x^(2) + y^(2) + z^(2) = r^(2)

The number of solutions of the equation sin x . Sin 2x. Sin 3x=1 in [0,2pi] is

Statement -1: sin 1 lt sin 2 lt sin3 Statement-2: sin3 lt sin2 lt sin1 Statement-3: sinx_(1) lt sinx_(2), x_(1) , x_(2) in (0,pi/2)

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2

If sin^-1 x+sin^-1 y+sin^-1 z=(3pi)/2 , then find the value of x^2+y^2+z^2