Home
Class 11
PHYSICS
Particles of masses 100 and 300 gram hav...

Particles of masses 100 and 300 gram have position vectors `(2hat(i)+5hat(j)+13hat(k))` and `(-6hat(i)+4hat(j)+2hat(k))`. Position vector of their centre of mass is

A

`-(16)/(4)hati+(17)/(4)hatj+(7)/(4)hatk`

B

`(20)/(4)hati+(17)/(4)hatj+(7)/(4)hatk`

C

`-(16)/(4)hati+(17)/(4)hatj+(19)/(4)hatk`

D

`-(16)/(4)hati+(13)/(4)hatj+(19)/(4)hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector of the center of mass of two particles, we can use the formula: \[ \vec{R}_{cm} = \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2} \] where: - \( m_1 \) and \( m_2 \) are the masses of the two particles, - \( \vec{r}_1 \) and \( \vec{r}_2 \) are their respective position vectors. ### Step 1: Identify the given values - Mass of the first particle, \( m_1 = 100 \) grams - Position vector of the first particle, \( \vec{r}_1 = 2\hat{i} + 5\hat{j} + 13\hat{k} \) - Mass of the second particle, \( m_2 = 300 \) grams - Position vector of the second particle, \( \vec{r}_2 = -6\hat{i} + 4\hat{j} + 2\hat{k} \) ### Step 2: Calculate the total mass \[ m_{total} = m_1 + m_2 = 100 \, \text{g} + 300 \, \text{g} = 400 \, \text{g} \] ### Step 3: Calculate the numerator of the center of mass formula \[ m_1 \vec{r}_1 + m_2 \vec{r}_2 = 100 \, \text{g} \cdot (2\hat{i} + 5\hat{j} + 13\hat{k}) + 300 \, \text{g} \cdot (-6\hat{i} + 4\hat{j} + 2\hat{k}) \] Calculating each term: - For the first particle: \[ 100 \cdot (2\hat{i} + 5\hat{j} + 13\hat{k}) = 200\hat{i} + 500\hat{j} + 1300\hat{k} \] - For the second particle: \[ 300 \cdot (-6\hat{i} + 4\hat{j} + 2\hat{k}) = -1800\hat{i} + 1200\hat{j} + 600\hat{k} \] ### Step 4: Add the two results together \[ m_1 \vec{r}_1 + m_2 \vec{r}_2 = (200\hat{i} - 1800\hat{i}) + (500\hat{j} + 1200\hat{j}) + (1300\hat{k} + 600\hat{k}) \] \[ = -1600\hat{i} + 1700\hat{j} + 1900\hat{k} \] ### Step 5: Divide by the total mass to find the center of mass \[ \vec{R}_{cm} = \frac{-1600\hat{i} + 1700\hat{j} + 1900\hat{k}}{400} \] \[ = -4\hat{i} + 4.25\hat{j} + 4.75\hat{k} \] ### Final Result The position vector of the center of mass is: \[ \vec{R}_{cm} = -4\hat{i} + 4.25\hat{j} + 4.75\hat{k} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Two bodies of mass 1 kg and 3 kg have position vectors hat i+ 2 hat j + hat k and - 3 hat i- 2 hat j+ hat k , respectively. The centre of mass of this system has a position vector.

Two bodies of mass 1 kg and 3 kg have position vectors hat i+ 2 hat j + hat k and - 3 hat i- 2 hat j+ hat k , respectively. The centre of mass of this system has a position vector.

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Find the scalar and vector paroducts of two vectors. a=(3hat(i)-4hat(j)+5hat(k)) " and " b=(-2hat (i) +hat(j)-3hat(k))