Home
Class 11
PHYSICS
a,b are the magnitudes of vectors veca &...

a,b are the magnitudes of vectors `veca` & `vecb` . If `vecaxxvecb=0` the value of `veca.vecb` is

A

`0`

B

`sqrt(ab)`

C

`ab`

D

`a//b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given information about the vectors \(\vec{a}\) and \(\vec{b}\). ### Step-by-Step Solution: 1. **Understand the Given Information**: We are given that the cross product of the vectors \(\vec{a}\) and \(\vec{b}\) is zero, i.e., \[ \vec{a} \times \vec{b} = 0 \] 2. **Interpret the Cross Product**: The cross product of two vectors is zero if and only if the vectors are parallel or one of them is the zero vector. Mathematically, this can be expressed as: \[ |\vec{a}| |\vec{b}| \sin \theta = 0 \] where \(\theta\) is the angle between the two vectors. 3. **Analyze the Condition**: Since the magnitudes of the vectors \(\vec{a}\) and \(\vec{b}\) are given as \(a\) and \(b\) respectively, we can conclude that: \[ a \cdot b \cdot \sin \theta = 0 \] This implies that either \(a = 0\), \(b = 0\), or \(\sin \theta = 0\). Since we are looking for the dot product, we will focus on the case where \(\sin \theta = 0\). 4. **Determine the Angle**: If \(\sin \theta = 0\), then \(\theta\) must be either \(0^\circ\) or \(180^\circ\). This means that the vectors \(\vec{a}\) and \(\vec{b}\) are in the same direction or opposite directions. 5. **Calculate the Dot Product**: The dot product of two vectors is given by the formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Since we have determined that \(\theta = 0^\circ\) or \(\theta = 180^\circ\): - If \(\theta = 0^\circ\), then \(\cos 0^\circ = 1\). - If \(\theta = 180^\circ\), then \(\cos 180^\circ = -1\). Therefore, we can express the dot product as: \[ \vec{a} \cdot \vec{b} = ab \cdot \cos \theta \] Depending on the angle: - For \(\theta = 0^\circ\): \(\vec{a} \cdot \vec{b} = ab \cdot 1 = ab\) - For \(\theta = 180^\circ\): \(\vec{a} \cdot \vec{b} = ab \cdot (-1) = -ab\) 6. **Final Answer**: Since the problem does not specify the direction of the vectors, the value of \(\vec{a} \cdot \vec{b}\) can be either \(ab\) or \(-ab\). However, typically, we take the positive value when discussing magnitudes, so we conclude: \[ \vec{a} \cdot \vec{b} = ab \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b are the magnitudes of vectors veca & vecb and veca.vecb=0 the value of |vecaxxvecb| is

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

If veca and vecb are two vectors, such that |veca xx vecb|=2 , then find the value of [veca vecb veca] xx vecb .