Home
Class 11
PHYSICS
If |vec(A)| = 4N, |vec(B)| = 3N the valu...

If `|vec(A)| = 4N, |vec(B)| = 3N` the value of `|vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =`

A

`5N`

B

`25N`

C

`144N`

D

`169N`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 \) given that \( |\vec{A}| = 4 \, \text{N} \) and \( |\vec{B}| = 3 \, \text{N} \). ### Step 1: Write the formulas for the cross product and dot product. The magnitude of the cross product is given by: \[ |\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta \] The magnitude of the dot product is given by: \[ |\vec{A} \cdot \vec{B}| = |\vec{A}| |\vec{B}| \cos \theta \] ### Step 2: Square both expressions. Now, we will square both the cross product and the dot product: \[ |\vec{A} \times \vec{B}|^2 = (|\vec{A}| |\vec{B}| \sin \theta)^2 = |\vec{A}|^2 |\vec{B}|^2 \sin^2 \theta \] \[ |\vec{A} \cdot \vec{B}|^2 = (|\vec{A}| |\vec{B}| \cos \theta)^2 = |\vec{A}|^2 |\vec{B}|^2 \cos^2 \theta \] ### Step 3: Add the squared expressions. Now we add the two squared expressions: \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = |\vec{A}|^2 |\vec{B}|^2 \sin^2 \theta + |\vec{A}|^2 |\vec{B}|^2 \cos^2 \theta \] Factoring out \( |\vec{A}|^2 |\vec{B}|^2 \): \[ = |\vec{A}|^2 |\vec{B}|^2 (\sin^2 \theta + \cos^2 \theta) \] ### Step 4: Use the Pythagorean identity. Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 = |\vec{A}|^2 |\vec{B}|^2 \cdot 1 = |\vec{A}|^2 |\vec{B}|^2 \] ### Step 5: Substitute the magnitudes of vectors A and B. Now substitute the given magnitudes: \[ |\vec{A}| = 4 \, \text{N} \quad \text{and} \quad |\vec{B}| = 3 \, \text{N} \] \[ |\vec{A}|^2 = 4^2 = 16 \quad \text{and} \quad |\vec{B}|^2 = 3^2 = 9 \] Thus, \[ |\vec{A}|^2 |\vec{B}|^2 = 16 \times 9 = 144 \] ### Final Answer Therefore, the value of \( |\vec{A} \times \vec{B}|^2 + |\vec{A} \cdot \vec{B}|^2 \) is: \[ \boxed{144} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (vec(A) + vec(B)) .(vec(A) xx vec(B)) ?

If |vec(a) | = 3, | vec(b) | =4 and | vec(a) xx vec(b) | = 10 , then | vec(a). vec(b) |^(2) is equal to

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

If | vec(a) xx vec(b) | =4 and | vec(a). vec(b) |=2 , then | vec( a) |^(2) | vec( b) | ^(2) is equal to

If |vec(a) | = 10 , | vec(b) | =2 and vec(a). vec(b) = 12 , then | vec(a) xx vec(b) | is equal to

Simplify : (i) | vec(a).vec(b)|^(2) +| vec(a) xx vec(b)|^(2) (ii) | vec(a).vec(b)|^(2)- |vec(a) xx vec(b)|^(2)

Find vec(a) * vec(b) if |vec(a)| = 6, |vec(b)| = 4 and |vec(a) xx vec(b)| = 12

|vec(a)|=2, |vec(b)|=3 and vec(a).vec(b)= -8 , then the value of |vec(a) + 3vec(b)| is

Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec(A))

If vec(a) and vec(b) are two vectors such that |vec(a)|= 2, |vec(b)| = 3 and vec(a)*vec(b)=4 then find the value of |vec(a)-vec(b)|