Home
Class 11
PHYSICS
If a,b are the magnitudes of vectors vec...

If a,b are the magnitudes of vectors `veca` & `vecb` and `veca.vecb=0` the value of `|vecaxxvecb|` is

A

`0`

B

`ab`

C

`sqrt(ab)`

D

`a//b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the magnitude of the cross product of two vectors \(\vec{a}\) and \(\vec{b}\) given that their dot product is zero. ### Step-by-Step Solution: 1. **Understanding the Given Information**: - We are given that the magnitudes of the vectors \(\vec{a}\) and \(\vec{b}\) are \(a\) and \(b\) respectively. - We know that \(\vec{a} \cdot \vec{b} = 0\). 2. **Interpreting the Dot Product**: - The dot product of two vectors is given by the formula: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\theta) \] where \(\theta\) is the angle between the two vectors. - Since \(\vec{a} \cdot \vec{b} = 0\), it implies that: \[ |\vec{a}| |\vec{b}| \cos(\theta) = 0 \] - For this equation to hold true, either \(|\vec{a}| = 0\), \(|\vec{b}| = 0\), or \(\cos(\theta) = 0\). Since we are dealing with non-zero vectors, we conclude that: \[ \cos(\theta) = 0 \implies \theta = 90^\circ \] - This means the vectors \(\vec{a}\) and \(\vec{b}\) are perpendicular to each other. 3. **Finding the Cross Product**: - The magnitude of the cross product of two vectors is given by the formula: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\theta) \] - Since we have established that \(\theta = 90^\circ\), we can substitute this into the equation: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(90^\circ) \] - We know that \(\sin(90^\circ) = 1\), so we have: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \cdot 1 = |\vec{a}| |\vec{b}| \] - Substituting the magnitudes \(a\) and \(b\): \[ |\vec{a} \times \vec{b}| = a \cdot b \] 4. **Conclusion**: - Therefore, the value of \(|\vec{a} \times \vec{b}|\) is \(ab\). ### Final Answer: \[ |\vec{a} \times \vec{b}| = ab \]
Promotional Banner

Similar Questions

Explore conceptually related problems

a,b are the magnitudes of vectors veca & vecb . If vecaxxvecb=0 the value of veca.vecb is

If |veca|=2, |vecb|=5 and |vecaxxvecb|=8 then find the value of veca.vecb

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 and veca.vecb\'=veca.vecc\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of [veca\' vecb\' vecc\']^-1 is (A) 2[veca vecb vecc] (B) [veca vecb vecc] (C) 3[veca vecb vecc] (D) 0

If veca, vecb and vecc be any three non coplanar vectors. Then the system of vectors veca\',vecb\' and vecc\' which satisfies veca.veca\'=vecb.vecb\'=vecc.vecc\'=1 veca.vecb\'=veca.veca\'=vecb.veca\'=vecb.vecc\'=vecc.veca\'=vecc.vecb\'=0 is called the reciprocal system to the vectors veca,vecb, and vecc . The value of (vecaxxveca\')+(vecbxxvecb\')+(veccxxvecc\') is (A) veca+vecb+vecc (B) veca\'+vecb\'+vecc\' (C) 0 (D) none of these

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca.vecb=0 and vecaxxvecb=0 prove that veca=vec0 or vecb=vec0 .

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

For any two vectors veca and vecb prove that |veca.vecb|<=|veca||vecb|

If |vecAxxvecB|=sqrt(3) vecA.vecB , then the value of |vecA+vecB| is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is