Home
Class 11
PHYSICS
If vecP=i+j+2k and vecQ=3i-2j+k, the uni...

If `vecP=i+j+2k and vecQ=3i-2j+k`, the unit vector perpendicular to both `vecP and vecQ` is

A

`(hati+hatj-hatk)/(sqrt(3))`

B

`5(hati+hatj-hatk)`

C

`(1)/(sqrt(3))(hati-hatj+hatk)`

D

`(1)/(25)(hati+hatj-hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is perpendicular to both vectors \(\vec{P}\) and \(\vec{Q}\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{P} = \hat{i} + \hat{j} + 2\hat{k} \] \[ \vec{Q} = 3\hat{i} - 2\hat{j} + \hat{k} \] ### Step 2: Calculate the cross product \(\vec{P} \times \vec{Q}\) To find a vector that is perpendicular to both \(\vec{P}\) and \(\vec{Q}\), we calculate the cross product \(\vec{P} \times \vec{Q}\) using the determinant method. \[ \vec{P} \times \vec{Q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 2 \\ 3 & -2 & 1 \end{vmatrix} \] ### Step 3: Expand the determinant Calculating the determinant: \[ \vec{P} \times \vec{Q} = \hat{i} \begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2 \\ -2 & 1 \end{vmatrix} = (1)(1) - (2)(-2) = 1 + 4 = 5\) 2. \(\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix} = (1)(1) - (2)(3) = 1 - 6 = -5\) 3. \(\begin{vmatrix} 1 & 1 \\ 3 & -2 \end{vmatrix} = (1)(-2) - (1)(3) = -2 - 3 = -5\) Putting it all together: \[ \vec{P} \times \vec{Q} = 5\hat{i} + 5\hat{j} - 5\hat{k} \] ### Step 4: Simplify the cross product Thus, we have: \[ \vec{P} \times \vec{Q} = 5\hat{i} + 5\hat{j} - 5\hat{k} \] ### Step 5: Calculate the magnitude of the cross product Now, we find the magnitude of \(\vec{P} \times \vec{Q}\): \[ |\vec{P} \times \vec{Q}| = \sqrt{(5)^2 + (5)^2 + (-5)^2} = \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3} \] ### Step 6: Find the unit vector The unit vector \(\hat{n}\) perpendicular to both \(\vec{P}\) and \(\vec{Q}\) is given by: \[ \hat{n} = \frac{\vec{P} \times \vec{Q}}{|\vec{P} \times \vec{Q}|} = \frac{5\hat{i} + 5\hat{j} - 5\hat{k}}{5\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k} \] ### Final Answer Thus, the unit vector perpendicular to both \(\vec{P}\) and \(\vec{Q}\) is: \[ \hat{n} = \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} - \frac{1}{\sqrt{3}} \hat{k} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular to the plane vec rdot(2 hat i+ hat j+2 hat k)=5.

Two vectors vecP and vecQ are inclined to each other at angle theta . Which of the following is the unit vector perpendicular to vecP and vecQ ?

Find the unit vector perpendicular the plane rcdot(2hat(i)+hat(j)+2hat(k))=5 .

Two vectors vecP and vecQ that are perpendicular to each other if :

If the vectors vecP=ahati+ahatj+3hatk' and 'vecQ=ahati-2hatj-hatk are perpendicular to each other. Find the value of a ?

If vector vecP=a hati + a hatj +3hatk and vecQ=a hati -2 hatj -hatk are perpendicular to each other , then the positive value of a is

If veca = hat i+ hat j+ hat k , vecb=2 hat i- hat j+3 hat k and vecc= hat i-2 hat j+ hat k find a unit vector parallel to the vector 2 veca- vec b+3 vecc .

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

Let veca = 2i + j+k, vecb = i+ 2j -k and a unit vector vecc be coplanar. If vecc is pependicular to veca . Then vecc is

If veca= hat i+ hat j+ hat k , vec b=2 hat i- hat j+3 hat k and vecc= hat i-2 hat j+ hat k find a unit vector parallel to the vector 2 veca- vecb+3 vecc .