Home
Class 11
PHYSICS
If veca" and "vecb are any two vectors s...

If `veca" and "vecb` are any two vectors such `|veca+vecb|=|veca-vecb|` find the angle between `veca" and "vecb`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the angle between two vectors \( \vec{a} \) and \( \vec{b} \) given that \( |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \). ### Step-by-Step Solution: 1. **Start with the given condition**: \[ |\vec{a} + \vec{b}| = |\vec{a} - \vec{b}| \] 2. **Square both sides to eliminate the square root**: \[ |\vec{a} + \vec{b}|^2 = |\vec{a} - \vec{b}|^2 \] 3. **Use the formula for the magnitude of vectors**: \[ |\vec{a} + \vec{b}|^2 = (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} \] \[ |\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} \] 4. **Set the two expressions equal to each other**: \[ |\vec{a}|^2 + |\vec{b}|^2 + 2 \vec{a} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} \] 5. **Cancel out \( |\vec{a}|^2 + |\vec{b}|^2 \) from both sides**: \[ 2 \vec{a} \cdot \vec{b} = -2 \vec{a} \cdot \vec{b} \] 6. **Combine like terms**: \[ 2 \vec{a} \cdot \vec{b} + 2 \vec{a} \cdot \vec{b} = 0 \] \[ 4 \vec{a} \cdot \vec{b} = 0 \] 7. **Since \( 4 \) is non-zero, we can conclude**: \[ \vec{a} \cdot \vec{b} = 0 \] 8. **Interpret the result**: The dot product of two vectors is zero when the angle \( \theta \) between them is \( 90^\circ \) (or \( \frac{\pi}{2} \) radians). 9. **Conclusion**: Therefore, the angle between \( \vec{a} \) and \( \vec{b} \) is: \[ \theta = \frac{\pi}{2} \text{ radians or } 90^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca and vecb are two such that |veca|=5, |vecb|=4 and |veca.vecb|=10 , find the angle between veca and vecb and hence find |vecaxxvecb|

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

If |veca+vecb|=|veca-vecb| , then what is the angle between veca " and "vecb ?

If |veca - vecb|=|veca| =|vecb|=1 , then the angle between veca and vecb , is

If veca . vecb =ab then the angle between veca and vecb is

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca * vecb = |veca xx vecb| , then this angle between veca and vecb is,

IF |veca|=sqrt(3), |vecb|=2 and |veca-vecb|=3 find the angle between veca and vecb .

If |vecA+vecB|=|vecA|+|vecB| , then angle between vecA and vecB will be

If | veca + vecb|=| veca - vecb| , then what is the angle between veca and vecb ?